

**Autonomous College under VTU** 

# BMS COLLEGE OF ENGINEERING BENGALURU Autonomous College under VTU

| VISION                    | MISSION                  |  |  |  |  |  |  |
|---------------------------|--------------------------|--|--|--|--|--|--|
| PROMOTING PROSPERITY OF   | ACCOMPLISH EXCELLENCE IN |  |  |  |  |  |  |
| MANKIND BY AUGMENTING     | THE FIELD OF TECHNICAL   |  |  |  |  |  |  |
| HUMAN RESOURCE CAPITAL    | EDUCATION THROUGH        |  |  |  |  |  |  |
| THROUGH QUALITY TECHNICAL | EDUCATION, RESEARCH AND  |  |  |  |  |  |  |
| EDUCATION & TRAINING      | SERVICE NEEDS OF SOCIETY |  |  |  |  |  |  |

DEPARTMENT OF CHEMICAL ENGINEERING
Program Accredited by NBA in Tier-1 format for 6 years

## SECOND, THIRD, AND FORTH YEAR SYLLABUS BOOK

(3<sup>rd</sup>, 4<sup>th</sup>, 5<sup>th</sup>, 6<sup>th</sup>, 7<sup>th</sup>, and 8<sup>th</sup> Semesters)
With effect from the A.Y. 2019-20

| Contents Particulars                                                   | Pages   |
|------------------------------------------------------------------------|---------|
| Scheme of Instruction for 3 <sup>rd</sup> and 4 <sup>th</sup> Semester | 6-6     |
| Scheme of Instruction for 5 <sup>th</sup> and 6 <sup>th</sup> Semester | 7-7     |
| Scheme of Instruction for 7 <sup>th</sup> and 8 <sup>th</sup> Semester | 8-8     |
| Detailed Syllabus for 3 <sup>rd</sup> and 4 <sup>th</sup> Semester     | 9-61    |
| Detailed Syllabus for 5 <sup>th</sup> and 6 <sup>th</sup> Semester     | 62-101  |
| Detailed Syllabus for 7 <sup>th</sup> and 8 <sup>th</sup> Semester     | 102-126 |



**Autonomous College under VTU** 

## **DEPARTMENT VISION**

Be a globally recognized Chemical Engineering Department by imparting quality education

## **DEPARTMENT MISSION**

- High-quality education and experience to the budding Chemical Engineers
- Chemical Engineering graduates to assume positions in process and other allied industries
- Foster and encourage the pursuit of excellence in chemical science and engineering
- Inculcate global research potential

## PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates pursue profession in chemical & allied engineering

PEO2: Graduates work in diversified team

PEO3: Graduates will pursue higher education & research

## PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Graduates will apply the knowledge of basic sciences and chemical engineering for techno feasible synthesis, separation and purification of products

PSO2: Graduates will ensure process safety and sustainability by automation and control of processes

PSO3: Graduates will optimize and design process equipment for engineering applications



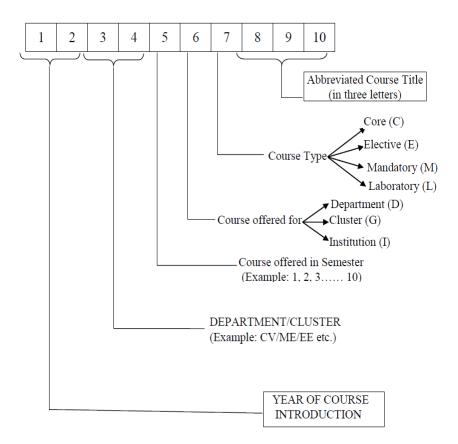
**Autonomous College under VTU** 

## PROGRAM OUTCOMES (POs)

| PO1  | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO3  | <b>Design/development of solutions:</b> Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO4  | <b>Conduct investigations of complex problems:</b> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO5  | <b>Modern tool usage:</b> Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                 |
| PO6  | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                                      |
| PO7  | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO8  | <b>Ethics:</b> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO10 | <b>Communication:</b> Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO11 | <b>Project management and finance:</b> Demonstrate knowledge and understanding of the Engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO12 | <b>Life-long learning:</b> Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                 |



**Autonomous College under VTU** 


## **NOTATIONS**

| AY   | Academic Year                       |
|------|-------------------------------------|
| AAT  | Alternative Assessment Tools        |
| BOE  | Board of Examiners                  |
| BOS  | Board of Studies                    |
| CBCS | Choice Based Credit System          |
| CGPA | Cumulative Grade Point Averages     |
| CIE  | Continuous Internal Evaluation      |
| СО   | Course Outcomes                     |
| DC   | Departmental Core                   |
| GC   | Group Core                          |
| HSS  | Humanity and Social Science courses |
| IC   | Institutional Core                  |
| IE   | Institutional Elective              |
| IL   | Institutional Lab                   |
| LTP  | Lecture-Tutorial-Practical          |
| NFTE | Not Fit for Technical Education     |
| PCC  | Professional Core Courses           |
| PSO  | Programme Specific Outcomes         |
| PO   | Programme Outcomes                  |
| PEC  | Professional Elective Courses       |
| SEE  | Semester End Examination            |
| SGPA | Semester Grade Point Average        |
| ST   | Studio                              |



Autonomous College under VTU

## NOMENCLATURE FOR THE COURSE CODE





Autonomous College under VTU

## SCHEME OF INSTRUCTION FOR THIRD SEMESTER

| S  | Course |            |                             | Credits |      |      | Total    | Contact |
|----|--------|------------|-----------------------------|---------|------|------|----------|---------|
| No | Type   | Code       | Course Title                | L       | T    | P    |          | Hours/  |
|    |        |            |                             |         |      |      |          | week    |
| 1. | BS-5   | 19MA3BSAPM | Applied Mathematics         | 3       | 0    | 0    | 3        | 3       |
| 2. | ES-7   | 19CY3DCMCA | Materials Chemistry and     | 3       | 0    | 0    | 3        | 3       |
|    |        |            | Applications                |         |      |      |          |         |
| 3. | PC-1   | 19CH3DCFME | Fluid Mechanics             | 3       | 0    | 1    | 4        | 5       |
| 4. | PC-2   | 19CH3DCMOP | Mechanical Operations       | 3       | 0    | 1    | 4        | 5       |
| 5. | PC-3   | 19CH3DCTD1 | Process Engineering         | 3       | 0    | 0    | 3        | 3       |
|    |        |            | Thermodynamics-I            |         |      |      |          |         |
| 6. | PC-4   | 19CH3DCPPC | Process Principles and      | 3       | 1    | 0    | 4        | 5       |
|    |        |            | Calculations                |         |      |      |          |         |
| 7. | HS-1   | 19CH3HSESP | Environmental Studies and   | 3       | 0    | 0    | 3        | 3       |
|    |        |            | Pollution Control           |         |      |      |          |         |
| 8. | MC     | 20CHDHMC1  | Kannada Language            | 1       | 0    | 0    | 1        | 1       |
| 9. | NC-3   | 19HS3NCPDC | Personality Development and | N       | Von- | -cre | dit mano | latory  |
|    |        |            | Communication Skills        |         |      | (    | Course   |         |
|    |        | TOT        | AL                          | 22      | 1    | 2    | 25       | 28      |

## SCHEME OF INSTRUCTION FOR FOURTH SEMESTER

| S  | Course |            |                            | Cı | edit | S | Total | Contact |
|----|--------|------------|----------------------------|----|------|---|-------|---------|
| No | Type   | Code       | Course Title               | L  | T    | P |       | Hours/  |
|    |        |            |                            |    |      |   |       | week    |
| 1. | PC-5   | 19MA4BSSAP | Statistics and Probability | 3  | 0    | 0 | 3     | 3       |
| 2. | PC-6   | 19CH4DCTD2 | Process Engineering        | 3  | 1    | 0 | 4     | 5       |
|    |        | 1901400102 | Thermodynamics-II          |    |      |   |       |         |
| 3. | PC-7   | 19CH4DCHTR | Process Heat Transfer      | 3  | 0    | 1 | 4     | 5       |
| 4. | PC-8   | 19CH4DCANI | Analytical Instruments     | 3  | 0    | 1 | 4     | 5       |
| 5. | PC-9   | 19CH4DCMT1 | Mass Transfer-I            | 3  | 0    | 0 | 3     | 3       |
|    |        |            | Constitution of India-     | 1  | 0    | 0 | 1     | 1       |
| 6. | HS-2   | 19IC4HSCPH | professional ethics and    |    |      |   |       |         |
|    |        |            | human rights               |    |      |   |       |         |
| 7. | PE-1   | 19CH4DELA1 | Chemical Plant utilities   | 3  | 0    | 0 | 3     | 3       |
|    |        | 19CH4DELA2 | Food engineering           |    |      |   |       |         |
| 8. | HS-3   | 19HS4CHEDM | Entrepreneurship           | 3  | 0    | 0 | 3     | 3       |
|    |        |            | Development & Management   |    |      |   |       |         |
|    |        | T          | OTAL                       | 22 | 1    | 2 | 25    | 28      |

Humanities and Social Sciences including Management Courses (HS); Basic Science Courses (BS); Engineering Science Courses (ES); Professional Core Courses (PC); Professional Elective Courses (PE); Open Electives (OE); Project Work (PW); Technical Seminar (SR); Internship in industry or Institution (IN); Non-Credit Mandatory Courses (NC).



Autonomous College under VTU

## SCHEME OF INSTRUCTION FOR FIFITH SEMESTER

| S  | Course   |            |                                    | C  | redi | ts | Total | Contact |
|----|----------|------------|------------------------------------|----|------|----|-------|---------|
| No | Type     | Code       | Course Title                       | L  | T    | P  |       | Hours/  |
|    |          |            |                                    |    |      |    |       | week    |
| 1. | PC-09    | 19CH5DCTRP | Transport Phenomena                | 3  | 0    | 0  | 3     | 3       |
| 2. | PC-10    | 19CH5DCPCE | Process Control Engineering        | 3  | 0    | 1  | 4     | 5       |
| 3. | PC-11    | 19CH5DCMT2 | Mass Transfer-II                   | 3  | 0    | 1  | 4     | 5       |
| 4. | PC-12    | 19CH5DCCR1 | Chemical Reaction Engineering-I    | 3  | 0    | 0  | 3     | 3       |
| 5. | PC-13    | 19CH5DCCED | Chemical Equipment Design          | 3  | 0    | 0  | 3     | 3       |
|    |          | 19CH5DELB1 | Operations Research                | 3  | 0    | 0  | 3     | 3       |
| 6. | PE-02    | 19CH5DELB2 | CH5DEL B2 Optimization of Chemical |    |      |    |       |         |
|    |          | 17CH3DEEB2 | Processes                          |    |      |    |       |         |
|    |          | 19CH5DELC1 | Petroleum Refining                 | 3  | 0    | 0  | 3     | 3       |
| 7. | PE-03    | 19CH5DELC2 | Recycling and Reuse of Waste for   |    |      |    |       |         |
|    |          | 19CH3DELC2 | Sustainable Development            |    |      |    |       |         |
| 8. | PW-01    | 19CH5DCPW1 | Project Using Modern Simulation    | 0  | 0    | 2  | 2     | 4       |
| 0. | F VV -U1 | 19CH3DCFW1 | Software Tools                     |    |      |    |       |         |
|    |          | T          | OTAL                               | 21 | 0    | 4  | 25    | 29      |

## SCHEME OF INSTRUCTION FOR SIXTH SEMESTER

| S  | Course |                           |                                | C  | redi | ts | Total | Contact |
|----|--------|---------------------------|--------------------------------|----|------|----|-------|---------|
| No | Type   | Code                      | Course Title                   | L  | T    | P  |       | Hours/  |
|    |        |                           |                                |    |      |    |       | week    |
| 1. | PC-14  | 19CH6DCPED                | Process Equipment Design       | 3  | 0    | 0  | 3     | 3       |
| 2. | PC-15  | 19CH6DCPMS                | Process Modeling Simulation    | 3  | 0    | 1  | 4     | 5       |
| 3. | DC 16  | 10CH(DCCD2                | Chemical Reaction Engineering- | 3  | 0    | 1  | 4     | 5       |
|    | PC-16  | 19CH6DCCR2                | II                             |    |      |    |       |         |
| 4. | HS-04  | 19CH6HSEIE                | Economics in Engineering       | 3  | 0    | 0  | 3     | 3       |
| 5. |        | 19CH6DELD1                | Numerical Techniques in        | 3  | 0    | 0  | 3     | 3       |
|    | PE-04  | 19СПОДЕЦД1                | Chemical Engineering           |    |      |    |       |         |
|    |        | 19CH6DELD2                | Interfacial phenomena          |    |      |    |       |         |
| 6. | OE-01  | 19CH6OECOM                | Composite Materials            | 3  | 0    | 0  | 3     | 3       |
| 7. | PW-02  | 19CH6DCPW2                | Chemical Plant Design Project  | 0  | 0    | 3  | 3     | 6       |
| 8. |        |                           | Seminar-1: Based on certified  | 0  | 0    | 2  | 2     | 2       |
|    | SR-01  | 19CH6DCSR1 MOOC course on |                                |    |      |    |       |         |
|    |        |                           | NPTEL/SWAYAM                   |    |      |    |       |         |
|    | •      | TO                        | OTAL                           | 18 | 0    | 7  | 25    | 30      |

Humanities and Social Sciences including Management Courses (HS); Basic Science Courses (BS); Engineering Science Courses (ES); Professional Core Courses (PC); Professional Elective Courses (PE); Open Electives (OE); Project Work (PW); Technical Seminar (SR); Internship in industry or Institution (IN); Non-Credit Mandatory Courses (NC).



Autonomous College under VTU

## SCHEME OF INSTRUCTION FOR SEVENTH SEMESTER

| S<br>No | Course<br>Type | Code       | Course Title                                               | L | red<br>T | its<br>P | Total<br>Credits | Contact<br>Hours |
|---------|----------------|------------|------------------------------------------------------------|---|----------|----------|------------------|------------------|
| 1.      | BS-7           | 19CH7BSBFE | Biology for Engineers                                      | 2 | 0        | 0        | 2                | 2                |
| 2.      | PC-17          | 19CH7DCBCE | Biochemical Engineering                                    | 3 | 0        | 0        | 3                | 3                |
| 3.      | PC18           | 19CH7DCCTN | Chemical Technology                                        | 3 | 0        | 0        | 3                | 3                |
| 4.      | PC-19          | 19CH7DCRSM | Risk and Safety Management in Process industries           | 0 | 0        | 2        | 2                | 4                |
| 5.      | OE-2           | 19CH7OENTN | Advances in Energy Technology                              | 3 | 0        | 0        | 3                | 3                |
| 6.      | PE-5           | 19CH7DELE1 | Advances in Separation Techniques                          | 3 | 0        | 0        | 3                | 3                |
|         |                | 19CH7DELE2 | Pilot Plant and Scale up studies                           |   |          |          |                  |                  |
| 7.      | PW-3           | 19CH7DCPPW | Pre-Final project Work                                     | 0 | 0        | 2        | 2                | 4                |
| 8.      | SR-2           | 19CH7DCSR2 | Seminar 2: Based on review of Research Publication/ Patent | 0 | 0        | 1        | 1                | 2                |
| _       | TOTAL          |            |                                                            |   |          |          | 19               | 24               |

## SCHEME OF INSTRUCTION FOR EIGHTH SEMESTER

| S<br>No | Course | Code       | Course Title                                    | Credits |   |    | Total<br>Credits | Contact<br>Hours |
|---------|--------|------------|-------------------------------------------------|---------|---|----|------------------|------------------|
|         | Type   |            |                                                 | L       | T | P  | Credits          | nouis            |
| 1.      | HS-5   | 19CH8HSPMF | Project Management and Finance                  | 3       | 0 | 0  | 3                | 3                |
| 2.      | OE-3   | 19CH8OEISO | Industrial Safety and<br>Occupational Health    | 3       | 0 | 0  | 3                | 3                |
| 3.      | PW-4   | 19CH8DCFPW | Final Project Work                              | 0       | 0 | 9  | 9                | 18               |
| 4.      | SR-3   | 19CH8DCSR3 | Seminar 3: Based on<br>Summer/Winter Internship | 0       | 0 | 1  | 1                | 2                |
|         |        | TC         | OTAL                                            | 05      | 0 | 10 | 16               | 26               |

Humanities and Social Sciences including Management Courses (HS); Basic Science Courses (BS); Engineering Science Courses (ES); Professional Core Courses (PC); Professional Elective Courses (PE); Open Electives (OE); Project Work (PW); Technical Seminar (SR); Internship in industry or Institution (IN); Non-Credit Mandatory Courses (NC).



**Autonomous College under VTU** 

## THIRD SEMESTER

| Course<br>Title |   |    |     |      |     |    |     | API  | PLI  | ED N | MATHEM  | ATI | CS            |            |
|-----------------|---|----|-----|------|-----|----|-----|------|------|------|---------|-----|---------------|------------|
| Course Code     | 1 | 9  | M   | A    | 3   | В  | S   | A    | P    | M    | Credits | 04  | L-T-P         | 3-1-0      |
| CIE             |   | 10 | 0 m | arks | (50 | )% | wei | ghta | age) |      | SEE     | 10  | 00 marks (50% | weightage) |

**PREREQUISITES:** Basic concepts of Trigonometry, methods of differentiation, methods of integration, solution of ordinary differential equations.

**COURSE OBJECTIVES:** The purpose of the course is to make the students conversant with concepts of Fourier Series, Fourier Transforms, extreme of functional and develop computational skills using efficient numerical methods for problems arising in science and engineering.

#### **UNIT-I**

MATRICES: Introduction: Elementary row transformations, Echelon form of a matrix, rank of a matrix by elementary row transformations. Consistency of a system of linear equations and solution. Solution of a system of non-homogenous equations: Gauss elimination method, Gauss-Seidel method. Eigenvalues and eigenvectors of matrices.

[8L+2T =10]

#### **UNIT-II**

NUMERICAL METHODS: Solution of algebraic and transcendental equations: Newton-Raphson method. Finite Differences and interpolation Forward differences, backward differences. Newton-Gregory forward interpolation formula, Newton-Gregory backward interpolation formula, Lagrange's interpolation, Numerical integration: Trapezoidal rule, Simpson's 1/3rd rule. Numerical solution of ordinary differential equations: Runge-Kutta method of fourth order.

[10L+2T = 12]

#### **UNIT-III**

**FOURIER SERIES**: Periodic functions, Dirichlet's conditions, Fourier series of a periodic functions of period 21, Fourier series of functions having points of discontinuity.

**FOURIER TRANSFORMS:** Infinite Fourier transform, Fourier Sine and Cosine transforms, Inverse transforms.

[10L+2T=12 Hrs].

#### **UNIT-IV**

**NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS:** Finite-Difference formulas to partial derivatives. Applications: Solution of one-dimensional heat equation using 2-level formula and Schmidt explicit formula and Crank-Nicolson two-level implicit formula. Solution of one-dimensional wave equation using explicit three level formula and implicit scheme.

[7L + 2T]

=09 Hrs].

**UNIT-V** 



Autonomous College under VTU

**CALCULUS OF VARIATIONS:** Variation of a functional, Euler's equation, variational problems. Applications: Geodesic on a plane, minimal surface of revolution, hanging cable problem, Brachistochrone problem. [7L + 2T]

## =09 Hrs].

On completion of the course the student will have the ability to:

| CO#  | COURSE OUTCOME (CO)                                                                                                                          | PO's |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
| CO 1 | Apply Numerical techniques to solve problems arising in engineering.  Demonstrate an understanding of Fourier Series and Fourier Transforms. | PO1  |
| CO 3 | Apply the concepts of calculus to functionals.                                                                                               |      |

#### **TEXT BOOKS:**

- 1. Higher Engineering Mathematics, B.S. Grewal, 43<sup>rd</sup> edition, 2014, Khanna Publishers.
- 2. Advanced Engineering Mathematics, Dennis G. Zill and Cullen, 4<sup>th</sup> edition, 2011, Jones and Bartlett India Pvt. Ltd.

#### **REFERENCE BOOKS:**

- 1. Higher Engineering Mathematics, B.V. Ramana, 7<sup>th</sup> reprint, 2009, Tata Mc. Graw Hill.
- 2. Numerical methods for Scientific and Engineering Computation, M. K. Jain, S.R. K Iyengar,
- 3. R. K. Jain, 6<sup>th</sup> edition, 2010, New Age International (P) Limited Publishers.

## **OUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, IV, V and two questions each from Unit II and III.

#### **ASSESSMENT:**

| Contin               | Continuous Internal Assessments                         |     |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------|-----|--|--|--|--|--|--|
| Theory Component     | Three Internals Test (Best of Two)                      | 80% |  |  |  |  |  |  |
|                      | Quiz (Two Quizzes or AAT)                               | 20% |  |  |  |  |  |  |
| Semester End Examina | Semester End Examination (Written Examination for Three |     |  |  |  |  |  |  |
| Hours)               | `                                                       |     |  |  |  |  |  |  |

## **ASSESSMENT PATTERN:**

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | <b>Total Marks</b> |
|-------------|--------|--------|------------|-------------|--------------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100                |
| Reduced CIE | 20     | 20     | 5          | 5           | 50                 |



**Autonomous College under VTU** 

#### (Common to All Branches)

| <b>Course Title</b> |             | Additional Mathematics-I                                |  |  |  |  |  |  |  |  |              |                                 |  |  |  |
|---------------------|-------------|---------------------------------------------------------|--|--|--|--|--|--|--|--|--------------|---------------------------------|--|--|--|
| Course Code         | 1           | 9 M A 3 I M M A T Credits 00 L-T-P 3-1-0                |  |  |  |  |  |  |  |  |              |                                 |  |  |  |
| CIE                 |             | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  | % weightage) |                                 |  |  |  |
| Contact             | <b>48</b> ] | 8 hours (36L+12T)                                       |  |  |  |  |  |  |  |  | III semes    | semester Lateral Entry students |  |  |  |
| hours               |             |                                                         |  |  |  |  |  |  |  |  |              |                                 |  |  |  |

**PREREQUISITES**: Basic concepts of Trigonometry, Trigonometric formulas, concept of differentiation, concept of integration.

**COURSE OBJECTIVES**: To provide students with a solid foundation in mathematical fundamentals such as differentiation, differential equations, vectors and orthogonal curvilinear coordinates for different branches of engineering.

#### UNIT- I

**DIFFERENTIAL AND INTEGRAL CALCULUS:** List of standard derivatives including hyperbolic functions, rules of differentiation. Taylor's and Maclaurin's series expansion for functions of single variable. List of standard integrals, integration by parts. Definite integrals – problems.

[7L+2T = 09Hrs]

#### **UNIT-II**

**POLAR COORDINATES AND PARTIAL DERIVATIVES:** Polar curves: Polar coordinates, angle between radius vector and tangent, angle between two polar curves. Partial differentiation. Total differentiation-Composite and Implicit functions. Jacobians and their properties (without proof) – Problems.

[7L+3T = 09Hrs]

#### **UNIT-III**

## VECTOR CALCULUS AND ORTHOGONAL CURVILINEAR COORDINATES:

Recapitulation of scalars, vectors and operation on scalars and vectors. Scalar and vector point functions. Del operator, gradient-directional derivative, divergence, curl and Laplacian operator. Vector identities (without proof). Cylindrical and Spherical polar coordinate systems. Expressing a vector point function in cylindrical and spherical systems. Expressions for gradient, divergence, curl and Laplacian in orthogonal curvilinear coordinates. [7L+3T = 10Hrs]

#### **UNIT-IV**

**FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS:** Introduction to first order differential equations. Linear equation and its solution. Bernoulli's equation and its solution. Exact differential equation and its solution. Orthogonal Trajectories. [7L+2T = 09Hrs]

## UNIT -V

SECOND AND HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS:



Autonomous College under VTU

Ordinary differential equations with constant coefficients: Homogeneous differential equations, non-homogeneous differential equations – Particular integral for functions of the type  $f(x) = e^{ax}$ ,  $\sin(ax)$ ,  $\cos(ax)$ ,  $x^n$ , method of variation of parameters, Cauchy's and Legendre linear differential equations. [8L+2T =10Hrs]

On completion of the course, students will have the ability to:

| CO # | COURSE OUTCOME (CO)                                                                                         | РО  |
|------|-------------------------------------------------------------------------------------------------------------|-----|
| CO 1 | Understand the basic concepts of differentiation and integration.                                           |     |
| CO 2 | Apply the concepts of polar curves and multivariate calculus.                                               |     |
|      | Apply analytical techniques to compute solutions of first and higher order ordinary differential equations. | PO1 |
| CO 4 | Apply techniques of vector calculus to engineering problems.                                                |     |
| CO 5 | Comprehend the generalization of vector calculus in curvilinear coordinate system.                          |     |

#### **TEXT BOOK:**

- 1. Higher Engineering Mathematics, B. S. Grewal, 43<sup>rd</sup> edition, 2014, Khanna Publishers
- 2. Advanced Engineering Mathematics, 4<sup>th</sup> edition, 2011, by Dennis G. Zill and Cullen, Jones and Bartlett India Pvt. Ltd.

#### **REFERENCE BOOK:**

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Precise Textbook series, Vol. 1 and Vol. 2, 10<sup>th</sup> edition, 2014, Wiley-India.
- 2. Higher Engineering Mathematics, B. V. Ramana, 2007, Tata McGraw Hill.

## E BOOKS AND ONLINE COURSE MATERIALS:

- 1. Engineering Mathematics, K. A. Stroud, Dexter J. Booth, Industrial Press, 2001
- 2. <a href="http://books.google.co.in/books/about/Engineering\_Mathematics.html?id=FZncL-xB8dEC&redir\_esc=y">http://books.google.co.in/books/about/Engineering\_Mathematics.html?id=FZncL-xB8dEC&redir\_esc=y</a>.
- 3. Advanced Engineering Mathematics, P. V. O'Neil, 5<sup>th</sup> Indian reprint, 2009, Cengage learning India Pvt. Ltd.
- 4. http://ocw.mit.edu/courses/mathematics/ (online course material)

#### **ONLINE COURSES:**

- 1. https://www.khanacademy.org/Math
- 2. https://www.class-central.com/subject/math (MOOCS)



**Autonomous College under VTU** 

| Course<br>Title |   | MATERIALS CHEMISTRY AND APPLICATIONS     |      |     |      |    |     |      |     |  |     |    |               |            |
|-----------------|---|------------------------------------------|------|-----|------|----|-----|------|-----|--|-----|----|---------------|------------|
| Course Code     | 1 | 9 C Y 3 D C M C A Credits 03 L-T-P 3-0-0 |      |     |      |    |     |      |     |  |     |    |               |            |
| CIE             |   | 10                                       | 00 m | ark | s (5 | 0% | wei | ghta | ge) |  | SEE | 10 | 00 marks (50% | weightage) |

#### **COURSE OBJECTIVES:**

- 1. To provide students with knowledge of engineering materials for building technical competence in industries.
- 2. To impart the knowledge of fundamentals in material science and engineering principles involved in catalytic materials, smart materials, ceramics, glass and lubricants

## **UNIT-I**

**INTRODUCTION TO MATERIALS CHEMISTRY:** The periodic properties: Atomic and ionic radii, ionization energy, electron affinity and electronegativity.

**STRUCTURE AND BONDING:** Types of bonds, Ionic bond: Lattice energy, Born-Haber Cycle. Calculation of lattice energies of NaCl and MgO, effect of lattice energy on solubility of ionic compounds.

**COVALENT BOND:** Valence bond approach: hybridization and directional nature of orbitals. VSEPR theory: shapes of molecules. Molecular orbital theory (stability, bond order, and magnetic properties).

**METALLIC BOND:** Band theory, electrical properties of metals, semiconductors and insulators, band gaps, doping.

**SECONDARY BONDING:** dipole-dipole, dipole –induced dipole, London dispersion/Van der Waals, Hydrogen bond (Intra molecular and Inter molecular types). Effect of secondary bonding on properties of materials. **8Hrs** 

## **UNIT-II**

**STRUCTURE OF SOLIDS:** Types of solids: General features and classification. Crystal systems and unit cells, Symmetry, Bravais lattices, Lattice planes and Miller indices, Reciprocal lattice, X-ray diffraction-Bragg's equation - numericals. PXRD, Neutron diffraction.

NON-STOICHIOMETRY - DEFECTS: point, line, surface, bulk, relevance of defect in material science. Intercalation compounds. Electron diffraction- Scanning electron microscopy, Transmission electron microscopy.

8Hrs

#### **UNIT-III**

**MATERIALS FOR CATALYSIS:** Catalysts - Definition, significance to industry. Types of catalysts-positive and negative catalyst, Catalytic promoters and poisons/inhibitors. Types of catalytic reactions-homogeneous, heterogeneous, autocatalysis and enzyme catalysis. Mechanism of catalysis by taking an example. Acid and base catalysis, metal ions, organometallic complexes- meaning, significance, Two examples in each case with mechanism

**SHAPE SELECTIVE CATALYSIS**: zeolites as catalysts-composition and structure, Preparation, properties and applications. Catalysts used in Steam reforming and cracking. Environmental catalysis-catalysts used in catalytic converters. **8Hrs** 



Autonomous College under VTU

#### **UNIT-IV**

**PHASE DIAGRAM AND PHASE TRANSFORMATIONS:** Phase rule, Single component system for Iron, Binary phase diagrams for Lead-Tin, Copper-Zinc and Iron-Iron-Carbide systems. Isothermal transformation (TTT) Curves for eutectoid steel.

**TYPICAL ENGINEERING MATERIALS:** Metals and non-metals, General properties of ferrous metals, non-ferrous metals and alloys, Copper and its alloys, lead and its alloys, Nickel and its alloys, Alloys for high temperature service.

8Hrs

#### **UNIT-V**

**INDUSTRIAL MATERIALS:** Ceramics: Raw materials and their roles, varieties of clay, production of ceramic ware, glazing, ceramic insulators. Glass: properties, types, manufacture of soda glass. Composition and applications of borosilicate, metallic glass, optical glasses and polycarbonate glass, safety glass, fire and bullet proof glasses.

**LUBRICANTS:** General Introduction — Types of Lubricants with examples (Solid lubricants, liquid lubricants, Greases, emulsion lubricants, Gaseous lubricants). Functions and mechanism of action. **7Hrs** 

#### **TEXT BOOKS:**

- 1. Materials Science and Engineering: A First Course, Prentice Hall India Learning Private Limited; 6<sup>th</sup> revised edition, V. Raghavan
- 2. Engineering Chemistry Fundamentals and Applications, Shikha Agarwal, Cambridge university press, 2016 edition
- 3. Inorganic Chemistry: Principles of Structure and Reactivity, James E. Huheey, Ellen A. Keiter, Richard L. Keiter, Okhil K. Medhi, Pearson Education India, 4<sup>th</sup> Edition.

## **REFERENCE BOOKS:**

- 1. Shriver and Atkins' Inorganic Chemistry, Peter Atkins, Tina Overton, Oxford University Press, 5<sup>th</sup> Edition
- 2. Solid state chemistry and its applications A.R. West, 2<sup>nd</sup> edn, John Wiley & Sons, Inc.
- 3. Callister's Materials Science and Engineering, R. Balasubramaniam, 2<sup>nd</sup> edition, John Wiley & Sons, Inc.
- 4. Solid State Physics, S. O. Pillai, New Age International, 2006, 8<sup>th</sup> edition
- 5. Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, Oxford University Press, 11<sup>th</sup> Edition

#### **MOOCs**

- 1. https://nptel.ac.in/noc/individual\_course.php?id=noc18-cy01
- 2. https://nptel.ac.in/courses/104104101/
- 3. https://nptel.ac.in/courses/104103019/

#### **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, II, V and two questions each from Unit III and IV.



Autonomous College under VTU

On completion of the course, the student will have the ability to:

| Cours | e outcomes:                                                                                                                                                        | PROGRAMME<br>OUTCOMES |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| CO 1  | Describe the principles of Chemistry involved in catalytic materials, ceramics, glass and lubricants.                                                              | PO1                   |
| CO 2  | Apply the learnt principle of materials chemistry in addressing societal problems.                                                                                 | PO2                   |
| CO 3  | Based on the acquired knowledge analyze the structure, topology, composition, catalytic properties and applications of materials.                                  | PO2                   |
| CO 4  | Understand to rationalise the main physical properties of soft materials in terms of their dependence on polymer composition, molecular weight and microstructure. | PO2                   |
| CO 5  | Comprehend the impact of advance materials for sustainable development                                                                                             | PO7                   |
| CO6   | Recognize the need for lifelong learning for selecting suitable materials for industrial applications                                                              | PO12                  |

## **ASSESSMENT:**

| Contin                      | Continuous Internal Assessments                         |                 |  |  |  |  |  |
|-----------------------------|---------------------------------------------------------|-----------------|--|--|--|--|--|
| Theory Component            | Three Internals Test (Best of Two)                      | 80%             |  |  |  |  |  |
|                             | Quiz (Two Quizzes or AAT)                               | 20%             |  |  |  |  |  |
| <b>Semester End Examina</b> | Semester End Examination (Written Examination for Three |                 |  |  |  |  |  |
| Hours)                      |                                                         | (Weightage 50%) |  |  |  |  |  |

## **Assessment Pattern:**

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | FLUID MECHANICS                          |       |      |      |    |      |      |     |  |     |   |               |            |
|---------------------|---|------------------------------------------|-------|------|------|----|------|------|-----|--|-----|---|---------------|------------|
| <b>Course Code</b>  | 1 | 9 C H 3 D C F M E Credits 04 L-T-P 3-0-1 |       |      |      |    |      |      |     |  |     |   |               |            |
| CIE                 |   | 1                                        | 100 n | nark | s (5 | 0% | weig | ghta | ge) |  | SEE | 1 | 00 marks (50% | weightage) |

**PREREQUISITES:** Engineering Physics and Engineering Maths

**SYLLABUS:** 

#### **UNIT-I**

**FLUID STATICS AND ITS APPLICATIONS:** Introduction, fluid properties, Pressure concept- Pascals's Law, Hydrostatic law, Pressure at a point in compressible fluid (Barometric Eq.), Measurement of fluid pressure-U-tube manometers, Inverted U-Tube manometer and Differential manometers.

**FLUID FLOW PHENOMENA:** Types of fluids - shear stress and velocity gradient relation, Newtonian and non - Newtonian fluids, Viscosity of gases and liquids. Types of fluid flow, Reynolds stress, Reynolds number Eddy viscosity, Flow in boundary layers, Boundary layer separation and wake formation.

10Hrs

#### **UNIT-II**

**KINETICS OF FLOW:** Average velocity, Mass velocity, Continuity equation.

**DYNAMICS OF FLOW:** Euler and Bernoulli equations, Modified equations for real fluids with correction factors. Applications of Bernoulli's Equation- Venturimeter, Orifice meter, Pitot tube, Rotameter, Pump work.

**FLOW THROUGH PIPES**: Energy loss due to friction (Minor and Major losses), friction factor chart, Laminar Flow through circular and non-circular pipe. Notches and Weir classification and discharge calculation.

10Hrs

#### **UNIT-III**

**FLOW OF COMPRESSIBLE FLUIDS:** Introduction, Thermodynamic relations, Basic equations of Compressible flow (Continuity, Bernoulli's or Energy equations, Momentum Equations and Equation of state), Velocity of sound or Pressure wave in a fluid, Stagnation properties, Concept of Mach number, Area–velocity relationship for compressible flow, Mass flow rate of compressible fluid through Venturimeter, Pitot static tube. **7Hrs** 

#### **UNIT - IV**

**TRANSPORTATION OF FLUIDS**: Pumps & Classification, construction and working of centrifugal pump, Heads and efficiency, Introduction to Priming and Cavitation, Characteristic curves of centrifugal pump, Net positive suction head and suction height. **7Hrs** 

#### UNIT- V

**DIMENSIONAL ANALYSIS**: Introduction, Primary and derived quantities, Dimensional homogeneity, Methods of dimensional analysis (Rayleigh's and Buckingham's II – method). Significance of different dimensionless numbers, Model analysis, Model laws and Similitude.

5Hrs



**Autonomous College under VTU** 

#### LABORATORY COMPONENT

- 1. Determination of Friction factor in circular pipes
- 2. Determination of Friction factor in non-circular pipes.
- 3. Friction in helical spiral coils.
- 4. Flow rate measurement using Orifice meters (incompressible fluid)
- 5. Measurement of pressure drop in Packed bed
- 6. Measurement of pressure drop in Fluidized bed
- 7. Study and development of characteristics for centrifugal pump
- 8. Study of various pipe fittings and their equivalent lengths
- 9. Fluid flow measurement using Venturi and Orifice meters (incompressible fluid)
- 10. Reynold's apparatus

#### **TEXT BOOK:**

- 1. McCabe. W. L. f et. al. "Unit Operations of Chemical Engineering", 5<sup>th</sup>edition., McGraw Hill New York 1993.
- 2. Bansal R.K, A Textbook of Fluid Mechanics (VTU), Edition 2005, Laxmi Publications.

## **REFERENCE BOOKS:**

- 1. R. K Rajput, "A Text Book on Fluid Mechanics", 2<sup>nd</sup> Edition 2002, S Chand and company Ltd.
- 2. Coulson J. and Richardson. J.F.., 'Chemical Engineering' Vol.II L., 5th edn., Asian Books (p) Ltd., New Delhi, 1998.

#### E BOOKS

- 1. Multimedia Engineering Fluid Mechanics: <a href="https://ecourses.ou.edu/cgi-bin/ebook.cgi?topic=fl">https://ecourses.ou.edu/cgi-bin/ebook.cgi?topic=fl</a>
- 2. Elementary Fluid Mechanics: http://www.worldscientific.com/worldscibooks/10.1142/5895

#### **MOOC'S & ONLINE COURSES:**

- 1. http://www.learnerstv.com/video/Free-video-Lecture-2626-Engineering.htm#
- 2. <a href="http://www.myopencourses.com/subject/fluid-mechanics-2#downloads">http://www.myopencourses.com/subject/fluid-mechanics-2#downloads</a>

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit III, IV, V and two questions each from Unit I and II.



**Autonomous College under VTU** 

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                                                              | PROGRAMME<br>OUTCOMES |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| CO1 | Apply basic principles of pressure & conservation laws to solve fluid flow problems                                                                          | PO1                   |
| CO2 | Possess familiarity with the construction and working of fluid flow equipment with an understanding of the requirements of professional engineering practice | PO3                   |
| CO3 | Develop correlations / solutions for flow processes that meet specific needs                                                                                 | PO3                   |
| CO4 | Estimate energy requirements and losses in transportation and metering of fluids.                                                                            | PO2                   |
| CO5 | Conduct fluid flow experiments in team and derive valid conclusions.                                                                                         | PO9                   |
| CO6 | Present the experimental observations in the form of a lab report.                                                                                           | PO2                   |

## **ASSESSMENT:**

| Contin          | uous Internal Assessments            | <b>Marks 100%</b> | Assessment |
|-----------------|--------------------------------------|-------------------|------------|
|                 |                                      | (Weightage 50%)   |            |
| Theory          | Three Internals (Best of Two)        | 40%               | Course     |
| Component       |                                      |                   | Instructor |
|                 | Quiz (One Quiz or AAT)               | 10%               | Course     |
|                 |                                      |                   | Instructor |
| Laboratory      | Laboratory Component                 | 50%               | Course     |
| Component       |                                      |                   | Instructor |
| Semester End Ex | camination ( Written Examination for | Marks             | 100        |
|                 | Three Hours)                         | (Weightage        | 2 50%)     |

## **ASSESSMENT PATTERN:**

| Component | Theory | (50%) |          | Practical (40%) |      | Total |  |
|-----------|--------|-------|----------|-----------------|------|-------|--|
|           | Test   | Test  | Quiz/AAT | Records &       | Lab  | Marks |  |
|           | 1      | 2     |          | Performances    | Test |       |  |
| Max.Marks | 20     | 20    | 10       | 30              | 20   | 100   |  |
| Reduced   | 10     | 10    | 5        | 15              | 10   | 50    |  |
| CIE       |        |       |          |                 |      |       |  |



Autonomous College under VTU

| <b>Course Title</b> |   | MECHANICAL OPERATIONS                                   |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 9 C H 3 D C M O P Credits 04 L-T-P 3-0-1                |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |

**PREREQUISITES:** Engineering Mechanics and Engineering Mathematics

**SYLLABUS:** 

#### UNIT- I

**Particle Technology**: Ideal and actual screen, Differential and cumulative size analysis, Particle size analysis, Specific surface area, Effectiveness and Problems. Standard screen series, Motion of screens, Gyratory screen shaker, Vibrating screen shaker, Trammels and Sub sieve analysis.

#### UNIT- II

**SIZE REDUCTION**: Forces used, Characteristics of products, Laws of size reduction, Work Index, Verification of laws, Problems. Open circuit grinding, Closed circuit grinding, Wet & dry grinding, Equipment: Jaw crusher, Gyratory crusher, Attrition mill, Ball mill, Roll crusher, Fluid energy mill & Hammer mill. **6Hrs** 

#### **UNIT-III**

**FLOW OF FLUID PAST IMMERSED BODIES**: Drag, Drag coefficient, Particle Reynolds number. Ergun equation and its modifications, Particle size determination by Kozeny Carmen equation, Types of fluidization & Applications. Conveying of solids-Belt conveyors Chain conveyors.

**FILTRATION**: Classification, Modification of Kozeny - Carman equation for filtration. Industrial filters: Filter press, Leaf filter, Rotary drum filter, Bag filter, Suspended batch centrifuge; Filter aids. Principles of cake filtration.

10Hrs

#### **UNIT-IV**

**MOTION OF PARTICLES THROUGH FLUIDS**: Equation for one dimensional motion of particles through a fluid in gravitational and centrifugal field, Terminal settling velocity, motion of spherical particle in different regions, Criterion for settling, Hindered settling, Cyclones, hydro cyclones and air elutriator, Heavy media separation.

**SEDIMENTATION**: batch settling test, theories, Application of batch settling test to design a continuous thickener and related problems, Storage of solids, open and closed storage. **10Hrs** 

#### **UNIT-V**

**AGITATION AND MIXING**: Types of impellers. Flow patterns in agitated vessels, Prevention of swirling, Power correlation and calculation. **Mixers:** Muller mixer, Ribbon blender, internal screw mixer, tumbling mixer. **Separations:** Electrostatic separation, Jigging, Froth floatation. **Size enlargement:** Pelletization, agglomeration **6Hrs** 

7Hrs



**Autonomous College under VTU** 

#### LABORATORY COMPONENT:

- 1. Air elutriation
- 2. Air permeability
- 3. Batch sedimentation
- 4. Beaker decantation
- 5. Drop weight crusher
- 6. ICI sedimentation
- 7. Jaw crusher
- 8. Leaf filter
- 9. Plate and frame filter press
- 10. Screen effectiveness

#### **TEXTBOOKS:**

- 1. McCabe, Warren, L., Smith, Julian, C. and Harriott, Peter, Unit operations of chemical engineering, 5th edition, McGraw-Hill, Singapore, 2000.
- 2. Kiran D Patil, Mechanical Operations Fundamental Principles and Applications, 2<sup>nd</sup> Edition Nirali Prakashan, India, 2012

#### **REFERENCE BOOKS:**

- 1. Badger, Walter, L. and Banchero, Julius, T. Introduction to Chemical Engineering, 3<sup>rd</sup> edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 1997.
- 2. Richardson, J.F., Harker, J. H., and Backhurst, J. R.Particle Technology and Separation Processes, 2nd volume, 5th edition, Replika Books Pvt. Ltd., New Delhi, 2003

#### E BOOKS

- Mechanical Operations Fundamental Principles and Applications: <a href="https://books.google.co.in/books/about/Mechanical\_Operations\_Fundamental\_Princi.htm">https://books.google.co.in/books/about/Mechanical\_Operations\_Fundamental\_Princi.htm</a>
   <a href="https://doi.operations.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.google.co.in/books.goog
- 2. Ebook Library chemical engineering mechanical Operations: <a href="http://csfbook.sourceforge.net/pdf/chemical-engineering-mechanical-operations.pdf">http://csfbook.sourceforge.net/pdf/chemical-engineering-mechanical-operations.pdf</a>

#### **MOOC's &ONLINE COURSES:**

- 1. <a href="http://nptel.ac.in/courses.php">http://nptel.ac.in/courses.php</a>
- 2. <a href="http://www.msubbu.in/sp/mo/">http://www.msubbu.in/sp/mo/</a>

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit III, II, V and two questions each from Unit III and IV.



**Autonomous College under VTU** 

## **COURSE OUTCOMES:**

|                 | COURSE OUTCOMES                                                                                      | PROGRAMME<br>OUTCOMES |
|-----------------|------------------------------------------------------------------------------------------------------|-----------------------|
| CO1             | Apply basic principles of mechanical operations                                                      | PO1                   |
| CO2             | Develop solutions by applying mass and force balance for unit                                        | PO2                   |
|                 | operations.                                                                                          |                       |
| CO3             | Analyse the working of equipment with an understanding of the                                        | PO3                   |
|                 | requirements of professional engineering practice.                                                   |                       |
| CO4             | Apply the knowledge of solid-solid and gas-solid separation techniques                               | PO4                   |
|                 | for various applications including coal, mineral beneficiation, environmental pollution control etc. |                       |
| CO5             | Conduct experiments and evaluate in team for different mechanical                                    | PO9                   |
|                 | operations to derive valid conclusion.                                                               |                       |
| CO <sub>6</sub> | Present the experimental observations in the form of a lab report.                                   | PO2                   |

## **ASSESSMENT:**

| Contin          | nuous Internal Assessments          | Marks 100% | Assessment     |  |
|-----------------|-------------------------------------|------------|----------------|--|
|                 |                                     | (Weightage |                |  |
|                 |                                     | 50%)       |                |  |
| Theory          | Three Internals (Best of Two)       | 40%        | Course         |  |
| Component       |                                     |            | Instructor     |  |
|                 | Quiz (One Quiz or AAT)              | 10%        | Course         |  |
|                 |                                     |            | Instructor     |  |
| Laboratory      | Laboratory Component                | 50%        | Course         |  |
| Component       |                                     |            | Instructor     |  |
| Semester End Ex | amination ( Written Examination for | Marks 100  |                |  |
|                 | Three Hours)                        | (Weightage | e <b>50%</b> ) |  |

## **ASSESSMENT PATTERN:**

| Component      | Theory             | (50%) |          | Practical (40%) | Total |       |
|----------------|--------------------|-------|----------|-----------------|-------|-------|
|                | Test Test Quiz/AAT |       | Quiz/AAT | Records &       | Lab   | Marks |
|                | 1                  | 2     |          | Performances    | Test  |       |
| Max. Marks     | 20                 | 20    | 10       | 30              | 20    | 100   |
| Reduced<br>CIE | 10                 | 10    | 5        | 15              | 10    | 50    |



Autonomous College under VTU

| <b>Course Title</b> |   | PROCESS ENGINEERING THERMODYNAMICS-I                    |  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|
| Course Code         | 1 | 9 C H 3 D C T D 1 Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |

**PREREQUISITES:** Engineering Chemistry and Engineering mathematics

#### **SYLLABUS:**

#### UNIT- I

**INTRODUCTION:** The scope of Thermodynamics, Different approaches, Heat and work, State and its forms, Intensive and extensive properties, System and types of system, Energy and its evaluation for various types of system, Equilibrium concept, Processes and types, Concept of stability, Zeroth law of thermodynamics, Phase rule, Temperature scale

6Hrs

#### **UNIT-II**

**FIRST LAW OF THERMODYNAMICS:** Joule's Paddle wheel experiment, Internal energy, First law of thermodynamics, Reversible and irreversible processes with examples, First law application to closed, open and steady state flow systems.

**EVALUATION OF VARIOUS FORMS OF ENERGY**: Enthalpy and its evaluation, Principle and working of flow calorimeter **10Hrs** 

#### UNIT-III

**VOLUMETRIC PROPERTIES OF PURE FLUIDS**: P-V-T behavior of pure fluids, Equations of state and ideal gas law, Equations of state for real gases: Virial equation and its applications, Ideal gas temperatures and universal gas constant; Cubic equations of state-Vander Waals equation and determination of parameters, Theorem of corresponding states; acentric factor, Pitzer correlations and compressibility charts.

**PROCESSES INVOLVING IDEAL GAS LAW**: Implied property relations for an ideal gas law, Equations for process calculations —constant volume, constant pressure, constant temperature, adiabatic and polytrophic processes, Numerical to evaluate energy interactions of various processes

10Hrs

#### **UNIT-IV**

**HEAT EFFECTS:** Sensible heat effects, Temperature dependence of the heat capacity, Latent Heat effects of pure substances, Standard heat of reaction, Standard heat of formation, Standard heat of combustion, Temperature dependency of  $\Delta H_0$ , Heat effects of industrial reactions **6Hrs** 

#### **UNIT-V**

**SECOND LAW OF THERMODYNAMICS:** Limitations of first law of thermodynamics, General statements of the Second law, Entropy, Carnot theorem and equations, Clausius inequality, Concept of entropy increase-Mathematical statement of the second law, Calculation of entropy changes, Ideal work and lost work; Third law of thermodynamics **7Hrs** 



**Autonomous College under VTU** 

#### **TEXT BOOKS:**

- 1. Smith J. M. and Van Ness H.C, "Introduction to Chemical Engineering Thermodynamics", 5<sup>th</sup> edition, McGraw Hill, New York, 1996.
- 2. Narayanan, K. V. "Chemical Engineering Thermodynamics", Prentice Hall of India Private Limited, New Delhi, 2001.

#### **REFERENCE BOOKS:**

- 1. Rao, Y.V.C Chemical Engineering Thermodynamics, New Age International Publication, Nagpur, 2000.
- 2. Halder, Gopinath, "Introduction to chemical engineering thermodynamics", PHI Learning Pvt. Ltd., New Delhi, 2009

#### E BOOKS

- 1. Kevin Dahm, "Fundamentals of Chemical Engineering Thermodynamics": https://books.google.co.in/books
- 2. Dimitrios Tassios, "Applied Chemical Engineering Thermodynamics": https://books.google.co.in/books

#### **MOOC's and ONLINE COURSES:**

- 1. <a href="http://elearning.vtu.ac.in/06ME33.html">http://elearning.vtu.ac.in/06ME33.html</a>
- 2. MOOC's Course on Thermodynamics: https://www.iitbombayx.in/courses/IITBombayX/ME209xA15/2015\_T1/about

#### **OUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, IV, V and two questions each from Unit II and III.

## **COURSE OUTCOMES (Cos):**

|                 | COURSE OUTCOMES                                                | PROGRAMME<br>OUTCOMES |
|-----------------|----------------------------------------------------------------|-----------------------|
| CO1             | Understanding of the fundamental concepts of thermodynamics    | PO1                   |
|                 | viz. Closed/open/steady flow systems, Intensive and extensive  |                       |
|                 | properties, Equilibrium, Phase rule etc.                       |                       |
| CO <sub>2</sub> | Knowledge of the inter-conversion of heat and work             | PO1                   |
| CO3             | Develop correlations for interrelated thermodynamic properties | PO3                   |
|                 | of systems.                                                    |                       |
| CO4             | Interpret the directional change by applying the thermodynamic | PO4                   |
|                 | concepts for steady state process.                             |                       |
| CO5             | Understand the concepts of entropy, enthalpy and Ideal gas     | PO8                   |
|                 | equation and various gas Laws and thermodynamic processes      |                       |
| CO6             | Ability to apply various thermodynamics laws to real systems   | PO6                   |



**Autonomous College under VTU** 

## **ASSESSMENT:**

| Contin               | Continuous Internal Assessments      |                 |  |  |  |  |  |
|----------------------|--------------------------------------|-----------------|--|--|--|--|--|
| Theory Component     | Three Internals Test (Best of Two)   | 80%             |  |  |  |  |  |
|                      | Quiz (Two Quizzes or AAT)            | 20%             |  |  |  |  |  |
| Semester End Examina | tion ( Written Examination for Three | Marks 100       |  |  |  |  |  |
| Hours)               |                                      | (Weightage 50%) |  |  |  |  |  |

## **ASSESSMENT PATTERN:**

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



**Autonomous College under VTU** 

| Course Title       |   | PROCESS PRINCIPLES AND CALCULATIONS       |    |       |               |     |      |      |    |  |     |       |             |            |
|--------------------|---|-------------------------------------------|----|-------|---------------|-----|------|------|----|--|-----|-------|-------------|------------|
| <b>Course Code</b> | 1 | 1 9 C H 3 D C P P C Credits 04 L-T- 3-1-0 |    |       |               |     |      |      |    |  |     |       |             |            |
|                    |   |                                           |    |       |               |     |      |      |    |  |     |       |             |            |
| CIE                | - | 100                                       | ma | rks ( | $(50^{\circ}$ | % w | eigl | ıtag | e) |  | SEE | 100 n | narks (50%) | weightage) |

**PREREQUISITES:** Engineering Mathematics and Engineering Chemistry **SYLLABUS:** 

#### UNIT- I

**UNITS AND DIMENSIONS**: Fundamental and derived units, conversion of units, dimensional consistency of equations, dimensionless groups and constants, conversion of equations.

**BASIC CHEMICAL CALCULATIONS**: Concept of mole, mole fraction, compositions of mixtures of solids, liquids and gases. Concept of normality, molarity, molality, parts per million. Use of semi log and triangular graphs, Ideal gas law, Amagat's law and Dalton's law and related problems.

[6L+2T=8Hrs]

#### UNIT -II

**MATERIAL BALANCE WITHOUT REACTION:** General material balance equation for steady and unsteady state operations. Typical steady state material balances in distillation, absorption, extraction, crystallization

MATERIAL BALANCES INVOLVING BYPASS, RECYCLE AND PURGING: drying, mixing and evaporation. [9L+3T=12Hrs]

#### **UNIT-III**

STEADY STATE MATERIAL BALANCE WITH REACTION: Principles of stoichiometry, concept of limiting and excess reactants and inert, fractional and percentage conversion, fractional yield and percentage yield, selectivity and related problems. [8L+2T=10Hrs]

#### **UNIT-IV**

CALCULATIONS RELATED FUELS AND COMBUSTION: Ultimate and proximate analysis of fuels, calculations involving burning of solid, liquid and gaseous fuels, excess air, air-fuel ratio calculations.

[9L+3T=12Hrs]

### **UNIT-V**

**ENERGY BALANCE:** General steady state energy balance equation, heat capacity, enthalpy, heat of formation, heat of reaction, heat of combustion, and heat of mixing, determination of heat of formation at standard and elevated temperatures, theoretical flame temperature and adiabatic flame temperature. [8L+2T=10Hrs]



**Autonomous College under VTU** 

#### **TEXT BOOKS**

- 1. K. V. Narayanan and B. Lakshmikutty Stoichiometry and Process Calculations, 2<sup>nd</sup> edition, 2009, PHI Learning private Ltd. New Delhi.
- 2. Bhatt B. L. and Vora S. M. Stoichiometry, 3<sup>rd</sup> edition, 1996,Tata McGraw Hill Publishing Ltd., New Delhi.

#### **REFERENCE BOOKS:**

- 1. Hougen O. A., Waston K. M. and Ragatz R.A., Chemical Process Principles Part -I' Material and Energy Balances, 2<sup>nd</sup> edition, CBS publishers and distributors, New Delhi, 1995
- 2. Himmelblau D.M., Basic Principles and Calculations in Chemical Engineering, 6<sup>th</sup> edition, Prentice Hall of India, New Delhi 1997. Charts: Psychrometric chart, steam tables

#### E-BOOKS

- 1. K. V. Narayanan, B. Lakshmikutty, "Stoichiometry and process calculations", https://books.google.co.in/books?id=52tqCFSC0ZgC&printsec
- 2. Gavhane, K. A, "Introduction to Process Calculations Stoichiometry", <a href="https://books.google.co.in/books?id=80v3hRHoEv0C&printsec">https://books.google.co.in/books?id=80v3hRHoEv0C&printsec</a>

#### **MOOC's and ONLINE COURSES:**

- 1. http://www.nptel.ac.in/syllabus/103102017/
- 2. http://elearning.vtu.ac.in/10BT46.html

#### **OUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, III, V and two questions each from Unit II and IV.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                 | PROGRAMME<br>OUTCOMES |
|-----|-----------------------------------------------------------------------------------------------------------------|-----------------------|
| CO1 | Familiarity with conversion of units and dimensional consistency of equations                                   | PO1                   |
| CO2 | Formulate material balances for processes involving single/ multiple components with/without reactions.         | PO2                   |
| CO3 | Solve material for processes involving single/ multiple components without reactions.                           | PO2                   |
| CO4 | Perform material balance calculations for chemical reaction.                                                    | PO3                   |
| CO5 | Apply the basics of material balance for air-fuel ratio calculations, excess and limiting reactant calculations | PO3                   |
| CO6 | Formulate and solve energy balance equations for various reactions.                                             | PO3                   |



**Autonomous College under VTU** 

## **ASSESSMENT:**

| Continuous Inter  | rnal Assessments              | Marks 100<br>(Weightage<br>50%) | Assessment by     |  |
|-------------------|-------------------------------|---------------------------------|-------------------|--|
| Theory Component  | Three Internals( Best of Two) | 80%                             | Course Instructor |  |
|                   | Quiz ( Two Quizzes or AAT)    | 20%                             | Course Instructor |  |
| Semester End Exam | nination ( Written            | Marks 100                       |                   |  |
| Examination fo    | r Three Hours)                | (Weightage 50%)                 |                   |  |

## **ASSESSMENT PATTERN:**

| Component  | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|------------|--------|--------|------------|-------------|-------------|
| Max. Marks | 40     | 40     | 10         | 10          | 100         |
| educed CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | ENVIRONMENTAL STUDIES AND POLLUTION CONTROL |                                          |  |  |  |  |  |  |  |     |                           |  |  |
|---------------------|---|---------------------------------------------|------------------------------------------|--|--|--|--|--|--|--|-----|---------------------------|--|--|
| <b>Course Code</b>  | 1 | 9                                           | 9 C H 3 H S E S P Credits 03 L-T-P 3-0-0 |  |  |  |  |  |  |  |     |                           |  |  |
| CIE                 |   | 100 marks (50% weightage)                   |                                          |  |  |  |  |  |  |  | SEE | 100 marks (50% weightage) |  |  |

**PREREQUISITES:** Engineering Chemistry and Engineering Physics

**SYLLABUS:** 

#### UNIT - I

**INTRODUCTION TO ENVIRONMENT:** Definition about Earth, atmosphere, hydrosphere, lithosphere and biosphere. Structure of Atmosphere: Troposphere, Stratosphere, Mesosphere, Ionosphere, Exosphere. Internal structure of the Earth: Crust, Mantle, Core. Ecosystem, types of Ecosystem: Land, Forest, Water, Desert, Marine.

**ENVIRONMENTAL PROTECTION ACTS:** Air, Water, land and Noise (Prevention and Control of pollution), Forest conservation, Wildlife protection. **6Hrs** 

#### **UNIT-II**

**SOCIAL ISSUES AND ENVIRONMENT**: Population growth, Climatic changes: Global warming, acid rain, ozone layer depletion. Water conservation: rain water harvesting and ground water recharging. Disaster management: floods, earthquakes, landslides-case studies.

WATER POLLUTION: Water as Resource, Drinking water quality, water consumption standards, Types of Water Pollutants and sources, State and central wastewater quality and various prevailing discharge standards. Wastewater Sampling and Characteristics - Physical, Chemical and Biological characteristics of wastewater: Solving numerical on the sampling, characteristics

#### UNIT – III

**WASTEWATER TREATMENT**: Preliminary/Primary/physical unit operations, Chemical unit processes, Secondary/Biological treatment process, aerobic/anaerobic attached and suspended growth process, Sludge treatment & Disposal.

**TERTIARY/ADVANCED WASTEWATER TREATMENT:** Ultrafiltration, Filtration, Adsorption on Activated Carbon, Ion Exchange, Reverse Osmosis.

**WASTEWATER TREATMENT IN SPECIFIC INDUSTRIES:** Sugar & distillery, Leather, Dairy and Textile. **10Hrs** 

## **UNIT-IV**

**AIR POLLUTION:** Definition, Sources, Classification, Properties of air pollutants, and Effects of air pollution on health, vegetation and materials

**AIR SAMPLING & CONTROL:** Ambient sampling and Stack sampling & Analysis of air pollutants, Control methods and Equipment for particulates and gaseous pollutants. **6Hrs** 

#### UNIT -V

**NOISE POLLUTION**: Definition, Sources, Effects of Noise, Equipment for Noise Measurement, Approaches for Noise Control.



**Autonomous College under VTU** 

**SOLID WASTE MANAGEMENT:** Definitions, Characteristics, Types, Sources and Properties of solid waste –Numerical problems **7Hrs** 

#### **TEXT BOOKS:**

- 1. Environmental Studies by R Geetha Balakrishna, KG Lakshminarayana Bhatta, Sunstar Publisher, 2016.
- 2. Environmental Engineering by Howard S. Peavey, Donald R. Rowe, George Techobanolous, McGraw-Hill International Editions.
- 3. Wastewater Engineering Treatment, Disposal and Reuse, METCALF AND EDDY, INC. 3<sup>rd</sup> Edition Tata McGraw-Hill Publishing Company Limited.

#### **REFERENCE BOOKS:**

- 1. Environmental studies by Dr. D.L.Manjunath, 1<sup>st</sup> Edition, PEARSON, 2006.
- 2. C S Rao, Environmental Pollution Control Engineering, New Age International Publisher, 2011.
- 3. M N. Rao, Air Pollution, Tata McGraw-Hill Publishing Company Limited

#### E BOOKS

- 1. Air Pollution by Mn Rao and Hvn Rao: <a href="http://www.avlib.in/ebook/title/air-pollution-mn-rao-and-hvn-rao-.html">http://www.avlib.in/ebook/title/air-pollution-mn-rao-and-hvn-rao-.html</a>
- 2. <a href="https://www.free-ebooks.net/ebook/introduction-to-wastewater-treatment">https://www.free-ebooks.net/ebook/introduction-to-wastewater-treatment</a>

#### **MOOC'S & ONLINE COURSES:**

- 1. http://www.openculture.com/free certificate courses
- 2. https://www.class-central.com/subject/civil-environmental-engineering
- 3. https://www.class-central.com/subject/environmental-science

#### **OUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, IV, V and two questions each from Unit II and III.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                           | Programme |
|-----|---------------------------------------------------------------------------|-----------|
|     |                                                                           | Outcomes  |
| CO1 | Understand the effect of environmental pollution on ecosystem             | PO6       |
| CO2 | Identify the impact of recovery, recycle and reuse for sustainable        | PO7       |
|     | development.                                                              |           |
| CO3 | Engage in lifelong learning for abatement and control of environmental    | PO12      |
|     | pollution                                                                 |           |
| CO4 | To acquire analytical skills in assessing environmental impacts through a | PO2       |
|     | multidisciplinary approach                                                |           |
| CO5 | Make an informed choice of equipment for pollution control.               | PO6       |
| CO6 | Develop practical, efficient, cost effective and ethical solutions for    | PO8       |
|     | challenges in environmental sciences and engineering.                     |           |



**Autonomous College under VTU** 

## **ASSESSMENT:**

| Continuo          | us Internal Assessments           | Marks 100<br>(Weightage 50%) | Assessment |  |
|-------------------|-----------------------------------|------------------------------|------------|--|
| Theory Component  | Three Internals( Best of Two)     | 80%                          | Course     |  |
|                   |                                   |                              | instructor |  |
|                   | Quiz (Two Quizzes or AAT)         | 20%                          | Course     |  |
|                   |                                   |                              | instructor |  |
| Semester End Exam | ination ( Written Examination for | Marks 1                      | 00         |  |
|                   | Three Hours)                      | (Weightage 50%)              |            |  |

## ASSESSMENT PATTERN:

| Component   | Test<br>1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|-----------|--------|------------|-------------|-------------|
| Max. Marks  | 40        | 40     | 10         | 10          | 100         |
| Reduced CIE | 20        | 20     | 5          | 5           | 50          |



**Autonomous College under VTU** 

| <b>Course Title</b> |   | PERSONALITY DEVELOPMENT AND COMMUNICATION SKILLS |  |  |  |  |  |  |  |  |     |   |                           |  |  |
|---------------------|---|--------------------------------------------------|--|--|--|--|--|--|--|--|-----|---|---------------------------|--|--|
| <b>Course Code</b>  | 1 | 9 H S 3 N C P D C Credits 00 L-T-P 1-0-0         |  |  |  |  |  |  |  |  |     |   |                           |  |  |
| CIE                 |   | 100 marks (50% weightage)                        |  |  |  |  |  |  |  |  | SEE | 1 | 100 marks (50% weightage) |  |  |

#### **SYLLABUS:**

#### UNIT - I

**PERSONALITY DEVELOPMENT:** Meaning, need, Introduction to Personality, Definition and Determinants –Personality Traits – Ways of developing positive personality traits, Self-awareness, Habits – Ways of forming good habits.

**SELF ESTEEM:** Introduction, Definition and Types –Faces of low self-esteem – Steps to improve low self-esteem. Self-Motivation: Definition – Ways of Building self-motivation.

**LEADERSHIP:** Key Elements of Leadership – Types of Leaders, Traits of an effective leader.

6Hrs

#### UNIT - II

**TEAMS:** Difference between a team and a group – Stages of Team development (The Five-Stage Model), Team effectiveness. Activity 1: Lost at Sea Activity 2: Team building exercise.

BUSINESS LETTERS: Types, Layouts, Structure Reports: Purpose, Types, Structure.

**EMPLOYMENT COMMUNICATION**: Resume and Cover Letter, Group Discussions and Employment Interviews Activity 1: Extempore Activity 2: Students are expected to write a one-page resume – Block format letter Activity 3: Short Report Writing for an event **7Hrs** 

## **TEXT BOOKS:**

Personality Development

- 1. Personality Development: Harold R. Wallace and Ann Masters Cengage Learning.
- 2. Personality Development and Soft Skills: Barun Mitra, OUP India.

#### **REFERENCE BOOKS:**

- 1. The Skills of Communicating: Bill Scott, Jaico Books.
- 2. Developing Effective People: Lesley Morrissey, Jaico Books.

#### **E-BOOKS:**

- 1. Personality Development and Soft Skills: Barun Mitra, OUP India.
- 2. Effective Communication Skills by MTD Training

#### **MOOCs:**

- 1. Communication in the 21<sup>st</sup> Century Workplace offered by Coursera
- 2. Communicating strategically –offered by edX



**Autonomous College under VTU** 

## **COURSE OUTCOMES:**

|     | COURSE OUTCOMES                                                              | Programme |
|-----|------------------------------------------------------------------------------|-----------|
|     |                                                                              | Outcomes  |
| CO1 | Understand and explain the aspects of personality development, team          | PO9       |
|     | development, communication skills, time and stress management                |           |
| CO2 | Apply the principles of communication for functional effectiveness           | PO10      |
| CO3 | Analyse the behavioural dimensions of individuals which have far reaching    | PO10      |
|     | impact in the development of an organization                                 |           |
| CO4 | Effectively communicate through verbal/oral communication and improve        | PO9       |
|     | the listening skills                                                         |           |
| CO5 | Actively participate in group discussion / meetings / interviews and prepare | PO10      |
|     | & deliver presentations                                                      |           |
| CO6 | Function effectively in multi-disciplinary and heterogeneous teams through   | PO9       |
|     | the knowledge of team work, Inter-personal relationships, conflict           |           |
|     | management and leadership quality                                            |           |



**Autonomous College under VTU** 

## **FOURTH SEMESTER**

| <b>Course Title</b> |   | STATISTICS AND PROBABILITY               |  |  |  |  |  |  |  |  |     |                           |  |  |
|---------------------|---|------------------------------------------|--|--|--|--|--|--|--|--|-----|---------------------------|--|--|
| <b>Course Code</b>  | 1 | 9 M A 4 B S S A P Credits 03 L-T-P 3-0-0 |  |  |  |  |  |  |  |  |     |                           |  |  |
| CIE                 |   | 100 marks (50% weightage)                |  |  |  |  |  |  |  |  | SEE | 100 marks (50% weightage) |  |  |

**PREREQUISITES:** Engineering Mathematics-1, Engineering Mathematics-2, and Applied Mathematics

**COURSE OBJECTIVES:** To prepare students with adequate knowledge in Probability and Statistics, Complex Analysis and develop computational skills using efficient numerical methods for problems in science and engineering. Student will get acquainted with the procedure of collecting, designing.

#### UNIT-I

**STATISTICS & PROBABILITY:** Curve fitting – Principle of least squares, fitting a straight line, fitting of a parabola, fitting of exponential curve of the form  $y = a b^{x}$ . Correlation and regression.

Probability distributions: Discrete distribution - Poisson distribution. Continuous distribution- Normal distribution. 9Hrs

#### **UNIT-II**

**JOINT PROBABILTY AND MARKOV CHAIN: Joint Probability Distributions:** Discrete random variables, Mathematical expectations, Covariance and Correlation.

**MARKOV CHAIN:** Markov Chain, Probability vectors, stochastic matrices, fixed point vector, regular stochastic matrices. Higher transition probabilities, stationary distribution of regular Markov chain. **7Hrs** 

#### **UNIT-III**

**DESIGN OF EXPERIMENTS:** Principles of experimental design – Randomization, Replication, Local Control. Randomized block design, Completely Randomized block design, Latin Square Design, Factorial Experiments – Problems. **7Hrs** 

#### **UNIT-IV**

**STATISTICAL INFERENCE** – **I:** Introduction, estimation – point, interval; procedure for testing of hypothesis, level of significance, construction of confidence interval.

[Large sample] Test of significance for single mean, difference between two means, single proportion, difference between two proportions, and difference of two Standard deviations for the biological data sets.

7Hrs

#### **UNIT-V**

**STATISTICAL INFERENCE** – **II:** [Small sample] Test of significance for single mean, difference between two means, paired t-test, ratio of variances (F-distribution), Chi-Square distribution-goodness of fit, independence of attributes. Analysis of variance (one-way and two-way classifications). **9Hrs** 



**Autonomous College under VTU** 

On Completion of the course the student will have the ability to:

| CO#  | COURSE OUTCOME (CO)                                                                                           | PO       |
|------|---------------------------------------------------------------------------------------------------------------|----------|
| CO 1 | Appreciate the use of Statistical methods to Analyze and interpret the data from real world examples.         | 1,2,9,10 |
| CO 2 | Apply the basic principles of probability and Probability distributions to the problems in Engineering.       | 1,2      |
| CO 3 | Apply the concepts of Markov chain to the field of genetics.                                                  | 1,2      |
| CO 4 | Demonstrate an understanding of sampling distributions and principles of experimental design.                 | 1,2      |
| CO5  | Describe and discuss the key terminology, concepts tools and techniques used in business statistical analysis | 1,2      |
| CO6  | Design experiments, carry them out, and analyze the data they yield                                           | 1,2      |

#### **TEXT BOOKS:**

- 1. P. S. S. Sundar Rao and J. Richard An Introduction to Biostatistics, 4<sup>th</sup> edition, 2006, Prentice Hall of India.
- 2. Higher Engineering Mathematics, B.S. Grewal, 43<sup>rd</sup> edition, 2013, Khanna Publishers.

#### **REFERENCE BOOKS:**

- 1. Advanced Modern Engineering Mathematics, Glyn James, 3<sup>rd</sup> edition, 2004, Pearson Education.
- 2. Higher Engineering Mathematics, B.V. Ramana, 7<sup>th</sup> reprint, 2009, Tata Mc.Graw Hill.

## E BOOKS AND ONLINE COURSE MATERIALS:

- 1. https://www.coursera.org/learn/basic-statistics
- 2. https://www.coursera.org/learn/probability-intro
- 3. https://www.classcentral.com/course/udacity-intro-to-statistics-361
- 4. http://wiki.stat.ucla.edu/socr/index.php/Probability and statistics EBook

#### ONLINE COURSES AND VIDEO LECTURES:

- $1. \quad \underline{\text{http://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-} \\ \underline{2014/}$
- 2. http://nptel.ac.in/courses/111105041/1 NPTEL >> Mathematics >> Probability and Statistics
- 3. https://www.khanacademy.org/Math
- 4. https://www.class-central.com/subject/math (MOOCS)

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit II, III, IV and two questions each from Unit I and V.



**Autonomous College under VTU** 

## **ASSESSMENT:**

| Contin               | Continuous Internal Assessments                         |                 |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------|-----------------|--|--|--|--|--|--|
| Theory Component     | Three Internals Test (Best of Two)                      | 80%             |  |  |  |  |  |  |
|                      | Quiz (Two Quizzes or AAT)                               | 20%             |  |  |  |  |  |  |
| Semester End Examina | Semester End Examination (Written Examination for Three |                 |  |  |  |  |  |  |
| Hours)               |                                                         | (Weightage 50%) |  |  |  |  |  |  |

## **ASSESSMENT PATTERN:**

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |  |  |
|-------------|--------|--------|------------|-------------|-------------|--|--|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |  |  |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |  |  |



**Autonomous College under VTU** 

#### (Common to All Branches)

| <b>Course Title</b> |             | Additional Mathematics-II                  |      |      |      |    |     |      |     |  |                                    |                           |       |  |  |
|---------------------|-------------|--------------------------------------------|------|------|------|----|-----|------|-----|--|------------------------------------|---------------------------|-------|--|--|
| <b>Course Code</b>  | 1           | 1 9 M A 4 I M M A T Credits 00 L-T-P 3-1-0 |      |      |      |    |     |      |     |  |                                    |                           | 3-1-0 |  |  |
| CIE                 |             | 10                                         | 00 m | arks | s (5 | 0% | wei | ghta | ge) |  | SEE                                | 100 marks (50% weightage) |       |  |  |
| Contact             | <b>48</b> ] | 8 hours (36L+12T)                          |      |      |      |    |     |      |     |  | IV semester Lateral Entry students |                           |       |  |  |
| hours               |             |                                            |      |      |      |    |     |      |     |  |                                    |                           |       |  |  |

**PREREQUISITES:** Basic concepts of Trigonometry, Trigonometric formulas, concept of differentiation, concept of integration.

**COURSE OBJECTIVES:** To provide students with a solid foundation in mathematical fundamentals such as Laplace Transforms, Solution of ordinary differential equations using Laplace Transforms, vector integration, computation of area and volume using double and triple integrals respectively.

#### **UNIT-I**

**LAPLACE TRANSFORMS:** Laplace transforms of standard functions. Properties and problems. Laplace Transform of Periodic functions with plotting, unit step function and diracdelta function.

[7L+2T = 09Hrs]

#### **UNIT-II**

**INVERSE LAPLACE TRANSFORMS:** Inverse Laplace transforms of standard functions. Properties and problems. Solution of ODE- Initial and Boundary value Problems.

[7L+3T = 10 Hrs]

#### **UNIT-III**

**DOUBLE INTEGRALS :** Evaluation of double integral. Change of order of integration. Change of variables to polar coordinates. Application: Area. [8L+3T = 11 Hrs]

#### **UNIT-IV**

**TRIPLE INTEGRALS AND IMPROPER INTEGRALS:** Evaluation of triple integral. Application: Volume. Beta and Gamma functions-definition, relation between Beta and Gamma functions, properties and problems. [7L+2T=09Hrs]

## **UNIT-V**

**VECTOR INTEGRATION:** Line integral, Green's theorem, Stokes' theorem and Gauss divergence theorem. [7L+2T = 09Hrs]

## **TEXT BOOK:**

- 1. Higher Engineering Mathematics, B. S. Grewal, 43<sup>rd</sup> edition, 2014, Khanna Publishers.
- 2. Higher Engineering Mathematics, B. V. Ramana, 2007, Tata McGraw Hill.



**Autonomous College under VTU** 

## **REFERENCE BOOK:**

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Precise Textbook series, Vol. 1 and Vol. 2, 10<sup>th</sup> edition, 2014, Wiley-India.
- 2. Advanced Engineering Mathematics, 4<sup>th</sup> edition, 2011, by Dennis G. Zill and Cullen, Jones and Bartlett India Pvt. Ltd

## E BOOKS AND ONLINE COURSE MATERIALS

- 1. Engineering Mathematics, K. A. Stroud, Dexter J. Booth, Industrial Press, 2001 http://books.google.co.in/books/about/Engineering\_Mathematics.html?id=FZnc L-xB8dEC&redir\_esc=y
- 2. Advanced Engineering Mathematics, P. V. O'Neil, 5<sup>th</sup> Indian reprint, 2009, Cengage learning India Pvt. Ltd.
- 3. http://ocw.mit.edu/courses/mathematics/ (online course material)

## **ONLINE COURSES:**

- 1. https://www.khanacademy.org/Math
- 2. https://www.class-central.com/subject/math (MOOCS)
- 3. E-learning: www.vtu.ac.in



**Autonomous College under VTU** 

| <b>Course Title</b> |   | PROCESS ENGINEERING THERMODYNAMICS-II                   |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 1 9 C H 4 D C T D 2 Credits 04 L-T-P 3-1-0              |  |  |  |  |  |  |  |
| CIE                 | 1 | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |

**PREREQUISITES:** Engineering Chemistry, Engineering mathematics and Process Engineering

Thermodynamics -I

**SYLLABUS:** 

## UNIT - I

THERMODYNAMIC PROPERTIES OF PURE FLUIDS: Thermodynamic properties, Relationships among thermodynamic properties, Heat capacity, Entropy and other forms of energy relations, Two phase systems-Clapeyron and Clausius-Clapeyron equations, Temperature dependence of vapor pressure of liquids, Alternative equations for liquids, Joule-Thomson coefficient, Gibbs-Helmholtz equation, Thermodynamic diagrams [9L+3T=12Hrs]

## **UNIT - II**

**RESIDUAL PROPERTIES:** Residual properties, Fugacity, Fugacity coefficient, Fugacity in solutions, Henry's law and dilute solutions, Activity, Activity in solutions, Activity coefficients, Property changes of mixing

**SOLUTION THERMODYNAMICS:** Partial molar properties and Gibbs- Duhem equations, Numerical on estimation of partial molar properties [9L+3T=12Hrs]

## **UNIT-III**

**PHASE EQUILIBRIA:** Criteria of phase equilibrium, Chemical potential, Criterion of stability, Duhem's theorem, Vapour-Liquid Equilibrium, Phase diagrams for binary solutions, VLE in ideal solutions, Simple models for vapor liquid equilibrium, VLE-Qualitative behaviour, Raoult's law, Henry's law and Modified Raoult's laws, Numerical on Dew and bubble point temperature and pressure, VLE from K value correlations, Flash calculations. **[8L+2T=10Hrs]** 

## **UNIT - IV**

**NON-IDEAL SOLUTIONS**: Excess properties, Azeotropes, Activity coefficient equations: Van Laar equation, Margules and Willson equations; Consistency test for VLE data: Slope method, Midpoint method, Redlich-Kister method and Partial pressure data [8L+2T=10Hrs]

## UNIT - V

CHEMICAL REACTION EQUILIBRIUM: Reaction Stoichiometry, Criteria of chemical reaction equilibrium, Equilibrium constant and standard free energy change, Feasibility of chemical reaction; Equilibrium constant: Effect of temperature, Evaluation, Effect of pressure; Equilibrium conversion: Effect of pressure, inert materials, excess of reactants, products, Phase rule for reacting system.

[6L+2T=08Hrs]



**Autonomous College under VTU** 

## **TEXT BOOKS:**

- 1. Smith J. M. and Van Ness H.C, "Introduction to Chemical Engineering Thermodynamics", 5<sup>th</sup> edition, McGraw Hill, New York, 1996.
- 2. Narayanan, K. V. "Chemical Engineering Thermodynamics", Prentice Hall of India Private Limited, New Delhi, 2001.

## **REFERENCE BOOKS:**

- 1. Rao, Y.V.C Chemical Engineering Thermodynamics, New Age International Publication, Nagpur, 2000.
- 2. Halder, Gopinath, "Introduction to chemical engineering thermodynamics", PHI Learning Pvt. Ltd., New Delhi, 2009

## E BOOKS

- 1. Kevin Dahm, "Fundamentals of Chemical Engineering Thermodynamics": https://books.google.co.in/books
- 2. DimitriosTassios, "Applied Chemical Engineering Thermodynamics": <a href="https://books.google.co.in/books">https://books.google.co.in/books</a>

## **MOOC's and ONLINE COURSES:**

- 1. <a href="http://elearning.vtu.ac.in/06ME33.html">http://elearning.vtu.ac.in/06ME33.html</a>
- 2. MOOC's Course on Thermodynamics: https://www.iitbombayx.in/courses/IITBombayX/ME209xA15/2015\_T1/about

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit III, IV, V and two questions each from Unit I and II.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                        | PROGRAMME<br>OUTCOMES |
|-----|------------------------------------------------------------------------|-----------------------|
| CO1 | Apply the knowledge of classical thermodynamics to predict the         | PO1                   |
|     | thermodynamic properties of ideal and real gases                       |                       |
| CO2 | Derive thermodynamic relations between thermodynamic properties        | PO2                   |
| CO3 | Estimate properties of ideal and real gases from the thermodynamic     | PO2                   |
|     | relations.                                                             |                       |
| CO4 | Apply equations of state for describing the phase behaviour of various | PO3                   |
|     | fluids.                                                                |                       |



Autonomous College under VTU

| CO5 | Evaluate the equilibrium conversion in a reversible reaction using the | PO3 |
|-----|------------------------------------------------------------------------|-----|
|     | Gibbs phase rule criteria                                              |     |
| CO6 | Assessment of the phase behaviour and equilibrium data of both pure    | PO3 |
|     | and multicomponent systems by using phase equilibrium criteria.        |     |

# **ASSESSMENT:**

| Continuou        | s Internal Assessments                        | Marks 100<br>(Weightage<br>50%) | Assessment<br>by |
|------------------|-----------------------------------------------|---------------------------------|------------------|
| Theory Component | Three Internal Tests ( Best of                | 80%                             | Course           |
|                  | Two)                                          |                                 | instructor       |
|                  | Quiz (Two Quizzes or AAT)                     | 20%                             | Course           |
|                  |                                               |                                 | instructor       |
|                  | mination ( Written Examination r Three Hours) | Marks<br>(Weighta               |                  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |  |
|-------------|--------|--------|------------|-------------|-------------|--|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |  |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |  |



Autonomous College under VTU

| <b>Course Title</b> |   | PROCESS HEAT TRANSFER                                   |  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 1 9 C H 4 D C H T R Credits 04 L-T-P 3-0-1              |  |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |

**PREREQUISITES:** Engineering Mathematics and Engineering Physics

**SYLLABUS:** 

## **UNIT-I**

**INTRODUCTION:** Various modes of heat transfer Viz. Conduction, Convection and Radiation.

**Conduction:** Fourier's law, Steady state unidirectional heat flow through single and multiple layer slabs, spheres and cylindrical surfaces for constant and variable thermal conductivity. **7Hrs** 

## **UNIT-II**

**INSULATION:** Properties of insulation materials, Types of insulation, Critical and Optimum thickness of insulation.

**FIN:** Types of fins, Heat dissipation from a fin loosing heat at tip, Heat flow through infinitely long rectangular fin, heat dissipation from fin insulated at tip. Fin efficiency and fin effectiveness-derivation and problems. Elementary treatment of unsteady state heat conduction.

10Hrs

## **UNIT-III**

**CONVECTION**: Individual and over all heat transfer coefficient, LMTD, LMTD correction factor, Heat Transfer with Phase Change: Boiling phenomena, Nucleate and film boiling. **CONDENSATION:** Film and Drop wise condensation, Nusselt's equations. **10Hrs** 

## **UNIT-IV**

**EVAPORATION:** Methods of Feeding multi effect evaporator, working of single effect natural Circulation evaporator. Enthalpy Balance for single effect evaporator and calculations, BPE, Durhring's Chart, Economy and capacity of Evaporators. **6Hrs** 

## **UNIT-V**

**RADIATION:** Definitions for absorptivity, reflectivity, emissive power and intensity of radiation, black body radiation, grey body radiation Stefan-Boltzman's Law, Wien's displacement Law, Kirchoff'sLaw, view factors. Radiation between surfaces-different shapes, radiation involving gases and vapors, radiation shields. **6Hrs** 

## LABORATORY COMPONENT

- 1. Shell and Tube Heat Exchanger
- 2. Double Pipe Heat Exchanger
- 3. Vertical condenser
- 4. Emissivity
- 5. Helical coil Heat Exchanger
- 6. Transient Heat Conduction (constant temperature)
- 7. Bare Tube Heat Exchanger
- 8. Fin Tube Heat Exchanger
- 9. Packed Bed Heat Exchanger
- 10. Transient Heat Conduction (constant flux)



**Autonomous College under VTU** 

## **TEXTBOOKS:**

- 1. Kern D. Q., "Process Heat Transfer" McGraw-Hill, NewYork, 1965
- 2. McCabe, Warren, L., Smith, Julian, C. and Harriott, Peter, "Unit operations of chemical engineering", 5th edition, McGraw-Hill, Singapore, 2000.

## **REFERENCE BOOKS:**

- 1. Coulson J. M. and Richardson J. F. "Unit Operations of Chemical Engineering, 5<sup>th</sup> edition, Chemical Engineering Pergamon and ELBS, McGraw Hill, New York 2000.
- 2. P. K. Nag, Heat and Mass Transfer, 2<sup>nd</sup> edition, Tata McGraw hill publications.

## E-BOOKS

- 1. Rao Y. V. C, Heat Transfer, 1<sup>st</sup> edition, Universities Press (India) Ltd., New Delhi, 2000.
- 2. Dutta, B. K, Heat Transfer: Principles and Applications, PHI Learning Pvt. Ltd., New Delhi, 2006

## **MOOC's and ONLINE COURSES:**

- 1. http://textofvideo.nptel.iitm.ac.in/103103031/lec1.pdf
- 2. <a href="https://www.mooc-list.com/course/heat-transfer-saylororg%3Fstatic%3Dtrue+&cd=7&hl=en&ct=clnk&gl=in">https://www.mooc-list.com/course/heat-transfer-saylororg%3Fstatic%3Dtrue+&cd=7&hl=en&ct=clnk&gl=in</a>

# **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, IV, V and two questions each from Unit II and III.

## **COURSE OUTCOMES (COs):**

| COU             | RSE OUTCOMES                                                       | PROGRAMME<br>OUTCOMES |
|-----------------|--------------------------------------------------------------------|-----------------------|
| CO1             | Understand the principles of heat transfers and perform heat flux  | PO2                   |
|                 | calculations for constant & variable area elements                 |                       |
| CO <sub>2</sub> | Estimation of optimum insulation thickness and select different    | PO2                   |
|                 | shapes of extended surfaces to enhance overall heat transferee co- |                       |
|                 | efficient.                                                         |                       |
| CO3             | Perform preliminary design of heat transfer equipment using data   | PO3                   |
|                 | with and without phase change                                      |                       |
| CO4             | Comprehend and apply the laws governing radiation mode             | PO2                   |
| CO5             | Conduct experiments in teams and estimate the heat transfer co-    | PO9                   |
|                 | efficient for fluids with and without phase change                 |                       |
| CO6             | Present the experimental observations in the form of a lab report. | PO2                   |



**Autonomous College under VTU** 

# **ASSESSMENT:**

| Continu          | ious Internal Assessments          | Marks 100%<br>(Weightage 50%) | Assessment |  |
|------------------|------------------------------------|-------------------------------|------------|--|
| Theory Component | Three Internals (Best of Two)      | Course                        |            |  |
|                  |                                    |                               | Instructor |  |
|                  | Quiz (One Quiz or AAT)             | 10%                           | Course     |  |
|                  |                                    |                               | Instructor |  |
| Laboratory       | Laboratory Component               | 50%                           | Course     |  |
| Component        |                                    |                               | Instructor |  |
| Semester End Exa | mination ( Written Examination for | Marks 1                       | 00         |  |
|                  | Three Hours)                       | (Weightage 50%)               |            |  |

| Component  | Theory | (50%) |          | Practical (50%) |       | Total |  |
|------------|--------|-------|----------|-----------------|-------|-------|--|
|            | Test   | Test  | Quiz/AAT | Records &       | Marks |       |  |
|            | 1      | 2     |          | Performances    | Test  |       |  |
| Max. Marks | 20     | 20    | 10       | 30              | 20    | 100   |  |
| Reduced    | 10     | 10    | 5        | 15              | 10    | 50    |  |
| CIE        |        |       |          |                 |       |       |  |



Autonomous College under VTU

| <b>Course Title</b> |   | ANALYTICAL INSTRUMENTS                                  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 9 C H 4 D C A N I Credits 04 L-T-P 3-0-1                |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |

**PREREQUISITES:** Engineering Physics, Engineering Chemistry and Technical Chemistry **SYLLABUS:** 

## UNIT - I

**INTRODUCTION:** Introduction to classical qualitative and quantitative analysis, classification of instrumental methods, Errors, precision and accuracy of instruments, Types of calibration curves for data handling and interpretation. **6Hrs** 

## UNIT - II

**SPECTROSCOPY:** UV spectral region, Origin of light absorptions in UV and IR, Electronic transitions of organic compounds, Modes of vibrations in IR spectra, Beer's Law, deviation of Beer's Law.

**INSTRUMENTATION OF UV AND IR SPECTROSCOPY:** Monochromatic Source, grating systems and types of detectors, different sampling techniques and application of UV & IR Spectroscopy.

10Hrs

## UNIT - III

**GRAVIMETRIC ANALYSIS:** Principle of Thermogravimetric 44nalyse44 (TGA), construction of TGA, principle of bomb Calorimeter (BC), principle of Differential scanning calorimeter (DSC), Instrumentation of TGA and BC, Application of TGA and BC instruments.

7Hrs

## UNIT - IV

**GAS CHROMATOGRAPHY:** Introduction, Principle, carrier gas, stationary phase, instrumentation, principles of column detectors: TCD, FID, ECD and PID, qualitative and quantitative analysis.

10Hrs

## UNIT - V

**HIGH PERFORMANCE LIQUID CHROMATOGRAPHY:** Principle, instrumentation, types of columns, sample injection, detectors used like (absorbance, refractive index, and electrochemical measurements), criteria for mobile phase selection and application of HPLC

6Hrs

## LABORATORY COMPONENT

- 1. Determination of Pka value of a component using UV-spectroscopy
- 2. Qualitative Analysis of UV-spectroscopy of KmnO<sub>4</sub>.
- 3. Effect of temperature on viscosity of oils using red wood viscometer
- 4. Determination of concentration of alkali metal by Flame photometer
- 5. Determination of moisture content in a liquid and solid samples using KF titration
- 6. Qualitative Analysis using Turbidometer
- 7. Thin layer Chromatography
- 8. Bomb calorimeter for analysis of calorific value of given sample.
- 9. Electro analytical instrument like conductivity cell and its measurements



**Autonomous College under VTU** 

## **TEXT BOOK:**

- 1. Instrumental Methods of Chemical Analysis; Gurudeep R. Chatwal and Sham K. Anand, Himalaya Publishing House
- 2. Douglas A. Skoog, F. James Holler, Stanley R. Crouch., "Principles of Instrumental Analysis", 6<sup>th</sup> Edition, published by Thomson Brooks/Cole, 2007.

## **REFERENCE BOOKS:**

- 1. Lloyd R. Snyder, Joseph J. Kirkland, John W. Dolan., "Introduction to Modern Liquid Chromatography"., 3<sup>rd</sup> Edition, Wiley-Blackwell, scholarly publishing.
- 2. H.H. Willard, L.L. Merritt, J.N. Dean and F.A. Settle, "Instrumental methods of analysis"., I.B.H. Publishing House, New Delhi

## E-BOOKS

- 1. Gregory S. Patience, "Experimental Methods and Instrumentation for Chemical Engineers": <a href="https://books.google.co.in/books?id">https://books.google.co.in/books?id</a>
- 2. Sharma, B. K, "Instrumental Methods of Chemical Analysis": <a href="https://books.google.co.in/books?id">https://books.google.co.in/books?id</a>

## **MOOC's and ONLINE COURSES:**

- 1. http://www.myopencourses.com/subject/modern-instrumental-methods-of-analysis
- 2. http://nptel.ac.in/courses/103108100/module1/module1.pdf

## **Question Paper Pattern:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, III, V and two questions each from Unit II and IV.

## **COURSE OUTCOMES (Cos):**

|                 | COURSE OUTCOMES                                                     | PROGRAMME<br>OUTCOMES |
|-----------------|---------------------------------------------------------------------|-----------------------|
| CO1             |                                                                     | PO1                   |
|                 | analytical instruments                                              |                       |
| CO <sub>2</sub> | Understand the impact, complexity, strength and limitations of      | PO2                   |
|                 | each instrument                                                     |                       |
| CO3             | Select suitable instruments based on their applicability            | PO2                   |
| CO4             | Conduct experiments in teams using various instruments for          | PO9                   |
|                 | physical and chemical analysis                                      |                       |
| CO5             | Present the experimental observations in the form of a lab report.  | PO2                   |
| CO6             | Ability to engage in life-long learning in context of technological | PO12                  |
|                 | change in instrumentations.                                         |                       |



**Autonomous College under VTU** 

# **ASSESSMENT:**

| Conti           | nuous Internal Assessments           | Marks 100%<br>(Weightage 50%) | Assessment |  |
|-----------------|--------------------------------------|-------------------------------|------------|--|
| Theory          | Three Internals (Best of Two)        | 40%                           | Course     |  |
| Component       |                                      |                               | Instructor |  |
|                 | Quiz (One Quiz/AAT)                  | 10%                           | Course     |  |
|                 |                                      |                               | Instructor |  |
| Laboratory      | Laboratory Component                 | 50%                           | Course     |  |
| Component       |                                      |                               | Instructor |  |
| Semester End Ex | xamination ( Written Examination for | Marks 100                     |            |  |
|                 | Three Hours)                         | (Weightage 50%)               |            |  |

| Component | Theory | (50%) |          | Practical (50%) | Total |       |
|-----------|--------|-------|----------|-----------------|-------|-------|
|           | Test   | Test  | Quiz/AAT | Records &       | Lab   | Marks |
|           | 1      | 2     |          | Performances    | Test  |       |
| Max.Marks | 20     | 20    | 10       | 30              | 20    | 100   |
| Reduced   | 10     | 10    | 5        | 15              | 10    | 50    |
| CIE       |        |       |          |                 |       |       |



Autonomous College under VTU

| <b>Course Title</b> |   | MASS TRANSFER-I                                         |  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 9 C H 4 D C M T 1 Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |

**PREREQUISITES:** Engineering Chemistry, Engineering Maths and Technical Chemistry **SYLLABUS:** 

## UNIT-I

**INTRODUCTION:** Diffusion in fluids, Diffusion in solids, Measurement and Calculations of diffusivities.

**Eddy diffusion:** Mass Transfer coefficients and their correlations, Theories of Mass Transfer, Interphase Mass Transfer. **10Hrs** 

## **UNIT-II**

**HUMIDIFICATION OPERATIONS**: Vapour pressure Curve, Enthalpy of pure substance, Humidity and related terminologies, Psychometric chart and evaluation of absolute humidity, molal humidity, relative humidity and others.

Adiabatic-Saturation Curves, Wet bulb temperature, Lewis Relation and gas liquid contact operations, Dehumidification. Equipment-Water Cooling towers and spray chamber. **10Hrs** 

## **UNIT-III**

**DRYING:** Introduction to drying operation, Equilibrium, Drying rate curves, Mechanism of drying. Equipment: Direct, and indirect batch driers, and rotary, spray and drum continuous driers.

6Hrs

## UNIT - IV

**ADSORPTION AND ION EXCHANGE**: Theories of adsorption, Industrial adsorbents. Material balance for co-current, cross current and counter current operations: Fixed Bed Adsorption, Adsorption of liquids and Ion Exchange. **7Hrs** 

## UNIT- V

**CRYSTALLIZATION:** Factors governing nucleation and crystal growth rates, Controlled growth of crystals, Incorporation of principles into design of equipment, Crystallizer equipment: Vacuum crystallizers and Draft Tube- Baffle Crystallizer. **6Hrs** 

## **TEXT BOOK:**

- 1. Robert E. Treybal, "Mass transfer operations", 3<sup>rd</sup> edition, McGraw Hill publications, 1980.
- 2. McCabe & Smith, "Unit operations in chemical engineering", 6<sup>th</sup> edition, McGraw Hill publications, 2001.

## REFERENCE BOOKS:

- 1. Coulson and Richardson, "Chemical Engineering", Vol I, II, IV & V, 4<sup>th</sup> edition, Pergamon press.
- 2. Badger, W.L. and Banchero J.T.,"Introduction to Chemical Engineering", 3<sup>rd</sup> edition, McGraw Hill International Edition., 1999.



**Autonomous College under VTU** 

## E BOOKS

- **1.** Mass Transfer in Chemical Engineering Processes, by Jozef Markoš http://www.e-booksdirectory.com/details.php?ebook=6659
- 2. Ion Exchange: Studies and Applications, Ayben Kilislioglu, <a href="http://www.e-booksdirectory.com/details.php?ebook=10637">http://www.e-booksdirectory.com/details.php?ebook=10637</a>
- 3.Transport Processes and Unit Operations by Geankoplis <a href="http://chembookneed.blogspot.in/2010/08/transport-processes-and-unit-operations.html">http://chembookneed.blogspot.in/2010/08/transport-processes-and-unit-operations.html</a>

## MOOC's:

- 1. Mass Transfer operations 1 <a href="https://www.coursebuffet.com/sub/chemical-engineering/480/mass-transfer-operations-i">https://www.coursebuffet.com/sub/chemical-engineering/480/mass-transfer-operations-i</a>
- 2. Mechanical heat and mass transfer <a href="https://www.springboard.com/udemy/mechanical-heat-and-mass-transfer/">https://www.springboard.com/udemy/mechanical-heat-and-mass-transfer/</a>

# **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit III, IV, V and two questions each from Unit I and II.

## **COURSE OUTCOMES (COs):**

|                 | COURSE OUTCOMES                                                    | PROGRAMME |
|-----------------|--------------------------------------------------------------------|-----------|
|                 |                                                                    | OUTCOMES  |
| CO <sub>1</sub> | Formulate equations to estimate diffusivities in fluids and solids | PO2       |
|                 | using first principles of engineering sciences                     |           |
| CO <sub>2</sub> | Apprehend the analogies in transport processes for validating and  | PO3       |
|                 | reaching substantiated conclusions.                                |           |
| CO3             | Apply mass transfer fundamentals to calculate rates of mass        | PO2       |
|                 | transfer.                                                          |           |
| CO4             | Knowledge of the operation/mechanism of adsorption, ion-           | PO7       |
|                 | exchange and crystallization.                                      |           |
| CO5             | Understanding of the concept and operation of various types of gas | PO3       |
|                 | liquid contacts equipment.                                         |           |
| CO6             | Design the system components for various mass transfer             | PO3       |
|                 | operations.                                                        |           |



**Autonomous College under VTU** 

# **ASSESSMENT:**

| Continuou         | s Internal Assessments            | Marks 100<br>(Weightage<br>50%) | Assessment<br>by |  |
|-------------------|-----------------------------------|---------------------------------|------------------|--|
| Theory Component  | Three Internal Tests ( Best of    | 80%                             | Course           |  |
|                   | Two)                              |                                 | instructor       |  |
|                   | Quiz (Two Quizzes or AAT)         | 20%                             | Course           |  |
|                   |                                   |                                 | instructor       |  |
| Semester End Exam | ination ( Written Examination for | Marks 100                       |                  |  |
|                   | Three Hours)                      | (Weightage 50%)                 |                  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



**Autonomous College under VTU** 

| <b>Course Title</b> | ( | CONSTITUTION OF INDIA-PROFESSIONAL ETHICS AND HUMAN RIGHTS |   |   |   |   |   |   |   |   |         |    |       |           |
|---------------------|---|------------------------------------------------------------|---|---|---|---|---|---|---|---|---------|----|-------|-----------|
| <b>Course Code</b>  | 1 | 9                                                          | Ι | C | 4 | H | S | C | P | H | Credits | 01 | L-T-P | 0 - 0 - 1 |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage)    |   |   |   |   |   |   |   |   |         |    |       |           |

## **COURSE OBJECTIVES:**

- 1. To educate students about the Supreme Law of the Land.
- 2. To value human dignity and to save the liberties of the people against discriminations.
- 3. To raise awareness and consciousness of the issues related to the profession and discuss the issue of liability of risks and safety at work place.

## **UNIT-I**

INTRODUCTION TO INDIAN CONSTITUTION: Historical Background of the Indian Constitution. Framing of the Indian constitution: Role of the Constituent Assembly – Preamble and Salient features of the Constitution of India, Fundamental Rights and its limitations. Fundamental Duties and their significance. Directive Principles of State Policy: Importance and its relevance. Case Studies

3Hrs

## UNIT-II

**UNION EXECUTIVE AND STATE EXECUTIVE:** The Union Executive – The President and The Vice President, The Prime Minister and The Council of Ministers. The Union Parliament – Lok Sabha & Rajya Sabha. The Supreme Court of India. State Executive – The Governors, The Chief Ministers and The Council of Ministers. The State Legislature – Legislative Assembly and Legislative Council. State High Courts.

3Hrs

## UNIT -III

**ELECTION COMMISSION OF INDIA, AMENDMENTS AND EMERGENCY PROVISIONS:** Election Commission of India – Powers & Functions – Electoral Process in India. Methods of Constitutional Amendments and their Limitations. Important Constitutional Amendments – 42<sup>nd</sup>, 44<sup>th</sup>, 61<sup>st</sup>,74<sup>th</sup>, 76<sup>th</sup>, 77<sup>th</sup>, 86<sup>th</sup> and 91<sup>st</sup>. Emergency Provisions. Case Studies.

2Hrs

## **UNIT-IV**

SPECIAL CONSTITUTIONAL PROVISIONS/ HUMAN RIGHTS: Special Constitutional Provisions for Schedule Castes, Schedule Tribes & Other Backward Classes. Women & Children. Case Studies. Human Rights/values – Meaning and Definitions, Legislative Specific Themes in Human Rights and Functions/ Roles of National Human Rights Commission of India. Human Rights (Amendment Act) 2006.

2Hrs

## **UNIT-V**

**PROFESSIONAL ETHICS:** Scope and Aims of Engineering Ethics, Responsibilities of Engineers and impediments to responsibilities. Honesty, Integrity and Reliability; Risks – Safety and Liability in Engineering. Case Studies.

3Hrs



**Autonomous College under VTU** 

# **QUESTION PAPER PATTERN:**

1. Online Examination: Objective Type

## **COURSE OUTCOMES:**

|     | COURSE OUTCOMES                                                          | PROGRAMME<br>OUTCOMES |
|-----|--------------------------------------------------------------------------|-----------------------|
| CO1 | Understand and explain the significance of Indian Constitution as the    | PO6                   |
|     | Fundamental Law of the Land.                                             |                       |
| CO2 | Analyse the concepts and ideas of Human Rights.                          | PO6                   |
| CO3 | Apply the practice of ethical responsibilities and duties to protect the | PO8                   |
|     | welfare and safety of the public.                                        |                       |
| CO4 | Discover of the set of justified moral principles of obligation, ideals  | PO8                   |
|     | that ought to be endorsed by the engineers and apply them to             |                       |
|     | concrete situations                                                      |                       |
| CO5 | Appreciate the Ethical issues and Know the code of ethics adopted in     | PO8                   |
|     | various professional body's and industries                               |                       |
| CO6 | Appreciate the Ethical issues and Know the code of ethics adopted in     | PO8                   |
|     | various professional body's and industries                               |                       |

# **TEXT BOOKS:**

- 1. "An Introduction to Constitution of India and Professional Ethics" by Merunandan K.B. and B.R. Venkatesh, Meragu Publications, 3rd edition, 2011.
- 2. "Constitution of India & Professional Ethics & Human Rights" by Phaneesh K. R., Sudha Publications, 10th edition, 2016.

# **REFERENCE BOOKS:**

- 1. "V.N. Shukla's Constitution of India" by Prof (Dr.) Mahendra Pal Singh (Revised), Eastern Book Company, Edition: 13th Edition, 2017, Reprint 2019.
- 2. "Ethics in Engineering" by Martin, W. Mike., Schinzinger, Roland., McGraw-Hill Education; 4<sup>th</sup> edition (February 6, 2004).

## E-Book:

- 1. <a href="https://books.google.co.in/books/about/Constitution\_of\_India\_and\_Professional\_E.html?id=VcvuVt-d88QC">https://books.google.co.in/books/about/Constitution\_of\_India\_and\_Professional\_E.html?id=VcvuVt-d88QC</a>
  - Constitution of India and Professional Ethics, by G.B. Reddy and Mohd Suhaib, I.K. International Publishing House Pvt. Ltd., 2006.
- 2. <a href="http://www.scribd.com/doc/82372282/Indian-Constitution-M-Raja-Ram-2009#scribd">http://www.scribd.com/doc/82372282/Indian-Constitution-M-Raja-Ram-2009#scribd</a> Indian Constitution, by M. Raja Ram, New Age International Pvt. Limited, 2009.



**Autonomous College under VTU** 

# **ASSESSMENT:**

| Contin                      | Marks 100<br>(Weightage 50%)                                    |     |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------|-----|--|--|--|--|
| Theory Component            | Three Internals Test (Best of Two) Online Test: Multiple Choice | 80% |  |  |  |  |
|                             | Two Alternate Assessment Tool(AAT): Essay                       | 20% |  |  |  |  |
| Semester End Examina Hours) | Semester End Examination ( Written Examination for Three        |     |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



**Autonomous College under VTU** 

| <b>Course Title</b> |   | CHEMICAL PLANT UTILITIES                                |  |  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 9 C H 4 D E L A 1 Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |  |

**PREREQUISITES:** Engineering physics and chemistry

**SYLLABUS:** 

## UNIT- I

**COMPRESSED AIR**: Types, construction and working: Reciprocating (Single and double), centrifugal and gear compressors, fans and blowers. Power requirement and performance calculations.

**VACUUM SYSTEMS**: Basic Concepts of vacuum and pressure, Components of vacuum system like vacuum chamber, pumps, gauges, valves, seals, and many other subsidiary components., Vacuum generation and Piping.

10Hrs

## UNIT- II

**STEAM AND POWER**: Fire tube boilers and water tube boilers, examples, boiler mountings and accessories, boiler performance and its calculation, Cogeneration power plants.

Fuels: Types, Proximate and ultimate analysis, Calorific value and its calculation.

# 6Hrs

## **UNIT-III**

**REFRIGERATION AND COLD STORAGE:** Refrigeration cycles, Refrigerants and their characteristics, chilled water plant, Coefficient of performance, Power requirement and related calculations.

**AIR CONDITIONING:** Air-conditioning system and its, components

**INSULATION:** Types of insulation, Different types of insulating materials and their characteristics, Selection criteria for insulating materials. **10Hrs** 

## **UNIT-IV**

**COOLING WATER**: Principle, types and construction of cooling towers, related calculations, humidification and dehumidification chambers.

**UTILITY PIPING:** Colour codes for piping, Chilled Water Insulation Piping, Compressed Air Piping, Water Utility Piping, Cooling Coil Heat Transfer, Anti Fire Pipes and steam piping.

7Hrs

## **UNIT-V**

WATER AND ITS TREATMENT: Sources of water, hard and soft water, Requisites of industrial water and its uses, Methods of industrial water treatment: Chemical softening, Demineralization Resins used for water softening, reverse osmosis and membrane separation, Effects of impure boiler feed water & its treatment.

6Hrs

## **TEXT BOOKS:**

- 1. Power Plant Engineering, P.K. Nag, Tata Mc Graw Hill-1998
- 2. Thermal Engineering, B.K. Sarkar, Tata Mc Graw Hill
- 3. Refrigeration and Air conditioning, C.P. Arora, Third Edition, McGraw Hill Companies



**Autonomous College under VTU** 

- 4. D. B. Dhone, Plant utilities, 2 nd Edition, Nirali Prakashan, Pune
- 5. Sathiyamoorthy Manickkam, Chemical Plant Utilities, Lambert Academic Publishing, 978-3-659-97828-9.

## **REFERENCE BOOKS:**

- 1. Handbook for process Plant Project Engineers, Peter Water mayer, Professional Engineering Publishing, 2002.
- 2. Perry's Chemical Engineering Hand Book, 8th Edition, McGraw Hill
- 3. Facility Piping Systems Handbook: For Industrial, Commercial, and Healthcare Facilities", Michael Frankel, 3<sup>rd</sup> edition, McGraw-Hill Professional publication

## E BOOKS:

- 1. Chemical Plant Utilities by Sathiyamoorthy Manickkam, <a href="https://www.lap-publishing.com/catalog/details//store/gb/book/978-3-659-97828-9/chemical-plant-utilities">https://www.lap-publishing.com/catalog/details//store/gb/book/978-3-659-97828-9/chemical-plant-utilities</a>
- 2. Steam Plant Operation by Everett B. Woodruff, Herbert B. Lammers, Thomas F. Lammers, <a href="https://www.accessengineeringlibrary.com/browse/steam-plant-operation-ninth-edition">https://www.accessengineeringlibrary.com/browse/steam-plant-operation-ninth-edition</a>

## **MOOC's and ONLINE COURSES:**

- 1. http://tafeqld.edu.au/course/15418/certificate-iv-process-plant-technology
- 2. https://training.gov.au/Training/Details/PMA40108

# **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit II, IV, V and two questions each from Unit I and III.

# **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                      | PROGRAMME<br>OUTCOMES |  |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|--|--|--|
|     |                                                                                                      |                       |  |  |  |  |  |  |  |  |  |
| CO1 | Enlist the applications of utilities in chemical processes                                           | PO1                   |  |  |  |  |  |  |  |  |  |
| CO2 | Identify the equipment used for a utility, describe their construction and working.                  | PO1                   |  |  |  |  |  |  |  |  |  |
| CO3 | Apply thermodynamic principles involved in utility generation and perform the relevant calculations. | PO3                   |  |  |  |  |  |  |  |  |  |
| CO4 | Compare equipment based on their relative advantages and disadvantages.                              | PO6                   |  |  |  |  |  |  |  |  |  |
| CO5 | Evaluate equipment based on their performance and efficiency calculations                            | PO7                   |  |  |  |  |  |  |  |  |  |



**Autonomous College under VTU** 

| CO6 | Aim for sustainable development in process by selecting suitable | PO7 |
|-----|------------------------------------------------------------------|-----|
|     | alternatives                                                     |     |

# **ASSESSMENT:**

| Continuo                 | is Internal Assessments            | Marks 100       |
|--------------------------|------------------------------------|-----------------|
|                          |                                    | (Weightage 50%) |
| Theory Component         | Three Internals Test (Best of Two) | 80%             |
|                          | Quiz (Two Quizzes or AAT)          | 20%             |
| Semester End Examination | on ( Written Examination for Three | Marks 100       |
| Hours)                   |                                    | (Weightage 50%) |

| Component   | Test 1 | Test 1 Test 2 Quiz 1/AAT Quiz 2 /AAT |    |    |     |  |  |
|-------------|--------|--------------------------------------|----|----|-----|--|--|
| Max. Marks  | 40     | 40                                   | 10 | 10 | 100 |  |  |
| Reduced CIE | 20     | 20                                   | 5  | 5  | 50  |  |  |



Autonomous College under VTU

| <b>Course Title</b> |   | FOOD ENGINEERING                          |     |      |      |    |     |      |      |  |     |    |              |            |
|---------------------|---|-------------------------------------------|-----|------|------|----|-----|------|------|--|-----|----|--------------|------------|
| <b>Course Code</b>  | 1 | 9 C H 4 D E L A 2 Credits 03 L-T-P- 3-0-0 |     |      |      |    |     |      |      |  |     |    |              |            |
| CIE                 |   | 10                                        | 0 m | arks | s (5 | 0% | wei | ghta | ige) |  | SEE | 10 | 0 marks (50% | weightage) |

**PREREQUISITES:** Engineering Chemistry and Technical Chemistry

**SYLLABUS:** 

## UNIT - I

**INTRODUCTION TO FOOD ENGINEERING:** Introduction: general aspects of food industry, world food demand and Indian scenario, Physical properties of food materials: Rheological models, Water activity, Fluid Flow in Food Processing: Liquid Transport Systems; Pipes for Processing Plants, Pumps for food plants; Numerical on fluid flow in food processing.

6Hrs

## UNIT - II

**FOOD PROCESSING AND PRESERVATION:** Food deterioration – Causes, Aims and objectives of preservation and processing.

**FOOD CONTAMINATION AND ADULTERATION:** Types of adulterants and contaminants, Intentional adulterants, Metallic contamination, Incidental adulterants, Nature and effects, food laws and standards, Hazard analysis and critical control points or HACCP, Food Safety and Standards Authority of India (FSSAI) **7Hrs** 

## **UNIT-III**

**HIGH-TEMPERATURE PRESERVATION:** Introduction to Thermal Processing; Pasteurisation; Commercial Sterilization Kinetics of Microbial Death; Thermal Death Time; Heat Transfer in Thermal Processing; Integrated F Value; Numericals; Batch & continuous Retorts for Thermal processing

**NON THERMAL PRESERVATION:** Cold sterilization: Gamma irradiation; Microwave & Ohmic heating, Pulsed Electric Field, High Pressure Processing

**LOW-TEMPERATURE PRESERVATION**: principles of low temperature preservation; freezing rate & freezing point; physical properties of frozen food; food quality during frozen storage; freezing equipment, plate freezer, blast freezer, fluidised bed freezer, scraped surface freezer; cryogenic and immersion freezing; prediction of freezing time using Plank's equation & Nagaoka's equation.

10Hrs

## **UNIT-IV**

**FOOD ADDITIVES**: Introduction and need for food additives, Types of additives – antioxidants, chelating agents, colouring agents, curing agents, emulsions, flavors and flavor enhancers, flavor improvers, humectants and anti-caking agents, leavening agents, nutrient supplements, non-nutritive sweeteners, pH control agents. Preservatives: types and applications, Stabilizers and thickeners, other additives, Additives and food safety. **6Hrs** 

## UNIT -V

**EXTRUSION PROCESSES:** Introduction to Extrusion, Basic Principles, Extrusion Systems, Cold Extrusion, Extrusion Cooking, Single Screw Extruders, Twin-Screw Extruders.



**Autonomous College under VTU** 

PACKAGING CONCEPTS: Introduction to packaging, food protection, product containment, commutation, convenience, mass transfer in packaging materials, and permeability of packaging material to fixed gases, innovations in food packaging, passive packaging, active packaging, intelligent packaging, food packaging and product shelf-life. Advances in aseptic processing and packaging, nutrition labelling.

10Hrs

## **TEXT BOOKS:**

1. R.Paul Singh and Dennis R. Introduction to Food Engineering, Elsevier Science & Technology, 5<sup>th</sup> Edition, ISBN: 9780123985309, 2013.

## **REFERENCE BOOKS:**

- 1. P.G. Smith, Introduction to Food Process Engineering Second Edition, Springer Press, ISBN 978-1-4419-7661-1, 2009
- 2. Subbulakshmi G. and Shobha A. Udupi, Food Processing and Preservation, New Age International Pvt. Ltd., ISBN: 8122412831, 2001

## E BOOKS

- [1] Food Engineering 1, Gustavo V. Barbosa-Canovas & Pablo Juliano <a href="http://www.eolss.net/ebooklib/ebookcontents/e5-10-themecontents.pdf">http://www.eolss.net/ebooklib/ebookcontents/e5-10-themecontents.pdf</a>
- [2] Food Processing, Carl J. Schaschke: http://bookboon.com/en/food-processing-ebook

## **MOOC's & ONLINE COURSES:**

- [1] <a href="https://www.coursetalk.com/subjects/food-nutrition/courses">https://www.coursetalk.com/subjects/food-nutrition/courses</a>
- [2] https://www.springboard.com/topic/food-engineering
- [3] http://elearning.vtu.ac.in/06BT74.html

# **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, II, IV and two questions each from Unit III and V.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                             | Programme |
|-----|-----------------------------------------------------------------------------|-----------|
|     |                                                                             | Outcomes  |
| CO1 | Identify sources of contaminants, adulterants and hazard analysis to ensure | PO2       |
|     | the safe food processing.                                                   |           |
| CO2 | Understand the need of food additives and its safety aspects                | PO2       |
| CO3 | Comprehend the engineering solutions for preservation of food               | PO2       |
| CO4 | Understand the impact of nutritional properties of food on societal and     | PO6       |



**Autonomous College under VTU** 

|     | health                                                                  |      |  |  |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------|------|--|--|--|--|--|--|--|--|--|--|
| CO5 | Comprehend the engineering solutions involved in the packaging          | PO7  |  |  |  |  |  |  |  |  |  |  |
|     | improvements for sustainable development of food industry.              |      |  |  |  |  |  |  |  |  |  |  |
| CO6 | Discern different technological change and recent advancements involved | PO12 |  |  |  |  |  |  |  |  |  |  |
|     | in food preservation                                                    |      |  |  |  |  |  |  |  |  |  |  |

# **ASSESSMENT:**

| Continuo          | ous Internal Assessments           | Marks 100<br>(Weightage 50%) | Assessment |
|-------------------|------------------------------------|------------------------------|------------|
| Theory Component  | Three Internals( Best of Two)      | 80%                          | Course     |
|                   |                                    |                              | instructor |
|                   | Quiz (Two Quizzes or AAT)          | 20%                          | Course     |
|                   |                                    |                              | instructor |
| Semester End Exan | nination ( Written Examination for | Marks 1                      | 00         |
|                   | Three Hours)                       | (Weightage                   | 50%)       |

| Component   | Test<br>1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |  |  |
|-------------|-----------|--------|------------|-------------|-------------|--|--|
| Max. Marks  | 40        | 40     | 10         | 10          | 100         |  |  |
| Reduced CIE | 20        | 20     | 5          | 5           | 50          |  |  |



**Autonomous College under VTU** 

| <b>Course Title</b> |   | ENTREPRENEURSHIP DEVELOPMENT AND MANAGEMENT             |  |  |  |  |  |  |  |  |  |  |            |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|------------|
| <b>Course Code</b>  | 1 | 9 H S 4 C H E D M Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |  |  |            |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |  |  | weightage) |

**PREREQUISITES:** Personality Development and communication skill

**SYLLABUS:** 

## **UNIT-I**

**MANAGEMENT:** Introduction-meaning-nature and characteristics of management, scope and functional area of management, management as a science or art of profession, management and administration roles of management, levels of management, Development of management thought -Early management approaches, Modern management approaches. **7 Hrs** 

## **UNIT-II**

ENTREPRENEUR: Meaning, evolution of the concept, functions of an Entrepreneur, Characteristics of an Entrepreneur, types of entrepreneur, Entrepreneur – an emerging class. Difference between Entrepreneur, Entrepreneur & Manager, Stages in Entrepreneurial process, Scope of Entrepreneur & Problems of Entrepreneur, Role of Entrepreneurs in economic development, Entrepreneurship- Meaning & Importance of Entrepreneurship in India. Its barriers, Women entrepreneur – Concept & steps to develop Women Entrepreneur. 10 Hrs

## **UNIT-III**

**SMALL SCALE INDUSTRY:** Ancillary Industry and Tiny Industry, Definition;, Characteristics; Objectives, Scope and role of SSI in economic Development, Advantages of SSI, problems of SSI, Steps to start an SSI, Government Policy towards SSI; Introduction to GATT/ WTO/ LPG. Forms of ownership. supporting agencies of government for ssi: Meaning, Nature of support; Objectives, functions. **6 Hrs** 

## **UNIT-IV**

**INSTITUTIONAL SUPPORT:** Different Schemes, TECKSOK, KIADB, KSSIDC, DIC,SISI NSIC, SIDBI, KSFC. Sources of financing an enterprise- long term and short term **6 Hrs** 

## **UNIT-V**

**PREPARATION OF PROJECT:** Meaning, Project identification, Project selection, Project Report - Need of Project, Contents: formulation:, Network Analysis Errors of project report, Project Appraisal, Feasibility Study-Market Feasibility Study, Technical Feasibility Study, Financial Feasibility Study, Social Feasibility Study.

10 Hrs

## **TEXT BOOKS**

- 1. Havinal Veerabhadrappa, Management and Entrepreneurship, New Age International Publishers, 2009.
- 2. S Nagendra and V S Manjunath, Entrepreneurship and Management, Pearson Publication 4<sup>TH</sup> Edition, 2009.
- 3. PC Tripathi and P N Reddy, Principles of Management, Tata MacGraw Hill.



**Autonomous College under VTU** 

## REFERENCE BOOKS

- 1. Entrepreneurship Development Poornima M Charanthimath Pearson Education 2006.
- 2. Entrepreneurship and management Shashi k Gupta- Kalyani publishers, Latest edition.
- 3. Dynamics of Entrepreneurial Development and Management-Vasant Desai-Himalaya Publishing House.

## E-BOOKS

- [1] Organizational behaviour, Stephen P Robbins, Timothy A. Judge, Neharika Vohra, Pearson, 14/e, 2012
- [2] Financial Management- Shashi k Gupta- Kalyani publishers, Latest edition

## **MOOC's and ONLINE COURSE**

- 1) https://www.mooc-list.com/course/entrepreneurship-openlearning
- 2) <a href="http://www.iimb.ernet.in/iimbx">http://www.iimb.ernet.in/iimbx</a>

# **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question from each unit.
- 4. One question each from Unit I, III, IV and two questions each from Unit II and V.

## **COURSE OUTCOMES (COs):**

|                 | COURSE OUTCOMES                                                          | PROGRAMME |
|-----------------|--------------------------------------------------------------------------|-----------|
|                 |                                                                          | OUTCOMES  |
| CO1             | Knowledge of management concepts and their evolution for professional    | PO6       |
|                 | engineering practice                                                     |           |
| CO <sub>2</sub> | Apply managerial skills and develop the necessary attributes to function | PO9       |
|                 | effectively in diverse teams.                                            |           |
| CO3             | Ability to explore for business opportunities.                           | PO12      |
| CO4             | Compile information about the support available from various agencies    | PO11      |
|                 | for starting an enterprise                                               |           |
| CO5             | Possess knowledge of the entrepreneurial process                         | PO11      |
| CO6             | Ability to formulate, prepare and present a project report.              | PO10      |



**Autonomous College under VTU** 

# **ASSESSMENT:**

| Continuo          | ous Internal Assessments           | Marks 100<br>(Weightage 50%) | Assessment |  |
|-------------------|------------------------------------|------------------------------|------------|--|
| Theory Component  | Three Internals( Best of Two)      | 80%                          | Course     |  |
|                   |                                    |                              | instructor |  |
|                   | Quiz (Two Quizzes or AAT)          | 20%                          | Course     |  |
|                   |                                    |                              | instructor |  |
| Semester End Exan | nination ( Written Examination for | Marks 100                    |            |  |
|                   | Three Hours)                       | (Weightage                   | 50%)       |  |

| Component   | Test<br>1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|-----------|--------|------------|-------------|-------------|
| Max. Marks  | 40        | 40     | 10         | 10          | 100         |
| Reduced CIE | 20        | 20     | 5          | 5           | 50          |



Autonomous College under VTU

## FIFTH SEMESTER

| <b>Course Title</b> |   | TRANSPORT PHENOMENA                                     |  |  |  |  |  |  |  |  |  |  |  |            |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|------------|
| <b>Course Code</b>  | 1 | 9 C H 5 D C T R P Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |  |  |  |            |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |  |  |  | weightage) |

**PREREQUISITES:** Engineering Mathematics, Fluid Mechanics, Heat Transfer, and Mass Transfer-I **SYLLABUS:** 

## UNIT - I

**INTRODUCTION:** Momentum, Energy and Mass Transport operations, Newton's law of viscosity(NLV), Newtonian and Non-Newtonian fluids, Fourier's law of heat conduction(FLHC), Fick's law of diffusion (FLD), Numerical problems. **06 Hrs** 

## UNIT - II

STEADY STATE SHELL MOMENTUM BALANCES: Different Flow situations, Steady state Shell momentum balances Boundary conditions applicable to momentum transport problems, Flow over a flat plate for Newtonian fluid and Non-Newtonian fluid, Flow through a circular tube for Newtonian fluid and Non-Newtonian fluid, Flow through Annulus. Flow between parallel plates and a slit. Numerical problems.

10 Hrs

## **UNIT-III**

**STEADY STATE SHELL ENERGY BALANCES:** General Boundary conditions applicable to energy transport problems of chemical engineering, Heat conduction through compound walls, Overall heat transfer coefficient based on inner and outer surface area. Heat conduction with internal generation by electrical, nuclear, viscous energy sources, Numerical problems.

10 Hrs

#### **UNIT-IV**

**STEADY STATE SHELL MASS BALANCES**: Steady state shell mass balances, General Boundary conditions applicable to mass transport problems of chemical engineering, Diffusion through stagnant gas and liquid films, Equimolar counter diffusion. Numerical problems.

STEADY STATE SHELL MASS BALANCES WITH REACTION: Diffusion with homogeneous and heterogeneous reaction. Diffusion into falling film- Forced convection mass transfer. Numerical problems.

07 Hrs

## UNIT -V

**ANALOGIES BETWEEN MOMENTUM, HEAT AND MASS TRANSPORT**: Reynold's, Prandtl's and Chilton & Colburn analogies.

**EQUATIONS OF CHANGE**: Various coordinate systems, Equation of continuity, Equation of motion; Navier-Stokes equation, Euler's equation. **06 Hrs** 

## **TEXTBOOKS:**

- 1. Bird, Stewart and Lightfoot, 'Transport Phenomena', 2<sup>nd</sup> Edition, Wiely Publications, 2006.
- 2. Bodh Raj, Introduction to Transport Phenomena, PHI Learning Publications, 2015.



Autonomous College under VTU

## **REFERENCE BOOKS:**

- 1. Christe John Geankoplis, Transport Process and Separation Process Principles, 4<sup>th</sup> Edition, Pearsons, 2015
- 2. Welty, Wikes and Watson,' Momentum Heat and Mass Transport'', 4<sup>th</sup> Edition. John Wiley.
- 3. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot and Daniel J. Klingenberg Introductory Transport Phenomena Wiley; 1<sup>st</sup> Edition, 2015.

## E-BOOKS

- 1. http://www.freeengineeringbooks.com/Chemical/Transport-Phenomena.php
- 2. http://www.hailienene.com/resources/transport-phenomena.pdf

# **MOOC's & ONLINE COURSES:**

- 1. https://swayam.gov.in/nd1 noc20 bt30/preview
- 2. <a href="https://www.edx.org/course/the-basics-of-transport-phenomena">https://www.edx.org/course/the-basics-of-transport-phenomena</a>

## **OUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, IV, V and two questions each from Unit II and III.

## **COURSE OUTCOMES (COs):**

|             | COURSE OUTCOMES                                                             | PROGRAMME |
|-------------|-----------------------------------------------------------------------------|-----------|
|             |                                                                             | OUTCOMES  |
| CO 1        | Understand the relevance of transport phenomena in transport process        | PO1       |
| CO 2        | Infer and analyze for steady state operation for momentum, heat & mass      | PO2       |
|             | transfer.                                                                   |           |
| CO3         | Apply the knowledge and reasoning to solve problems based on shell          | PO4       |
|             | momentum, energy & mass balances across various boundary conditions.        |           |
| CO 4        | Extend the knowledge of transport phenomena with reaction and without       | PO3       |
|             | reactions                                                                   |           |
| CO 5        | Apply the equation of changes for systems of various geometry               | PO3       |
| <b>CO 6</b> | Liken the similarities of transport process between momentum, heat and mass | PO2       |
|             | transport.                                                                  |           |

## **ASSESSMENT:**

| Continu   | ous Internal Assessment            | <b>Marks 100%</b>    | Assessment        |
|-----------|------------------------------------|----------------------|-------------------|
|           |                                    | (Weightage 50%)      |                   |
| Theory    | Three Internals (Best of Two)      | 80%                  | Course Instructor |
| Component | Quiz (One Quiz or AAT)             | 20%                  | Course Instructor |
| Seme      | ester End Examination (Written Exa | mination for Three H | ours)             |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | PROCESS CONTROL ENGINEERING              |  |  |  |  |  |  |    |                        |  |  |  |              |
|---------------------|---|------------------------------------------|--|--|--|--|--|--|----|------------------------|--|--|--|--------------|
| <b>Course Code</b>  | 1 | 9 C H 5 D C P C E Credits 04 L-T-P 3-0-1 |  |  |  |  |  |  |    |                        |  |  |  |              |
| CIE                 | 1 | 100 marks (50% weightage)                |  |  |  |  |  |  | e) | SEE 100 marks (50% wei |  |  |  | 6 weightage) |

**PREREQUISITES:** Engineering Mathematics I and Engineering Mathematics II

**SYLLABUS:** 

## UNIT - I

**FIRST ORDER SYSTEMS:** Thermometer level in a tank, mixing tank, STR, Linearization of I-order systems in series, Response for various input forcing functions. **05 Hrs** 

## UNIT – II

**SECOND ORDER SYSTEMS**: Characteristics of manometer and damped vibrator. Transfer functions. Response for various input forcing functions, response for step input for under damped case-terms associated, transportation lag.

10 Hrs

#### **UNIT-III**

**CLOSED LOOP SYSTEM**: Basic components, Servo and regulator control, Controllers- P, I, D and On-Off modes, Controller combinations - Final control elements -Valves, actuators and valve positioners **07 Hrs** 

#### **UNIT-IV**

**CLOSED LOOP RESPONSE:** Block diagram, closed loop transfer function, Transient response of servo and regulator control systems with various controller modes and their characteristics

07 Hrs

#### UNIT -V

STABILITY: Stability of linear control systems, Routh Test, Frequency Response- Bode diagrams,

CONTROL SYSTEM DESIGN BY FREQUENCY RESPONSE: Bode criterion, Gain and Phase margins.

Ziegler-Nichols controller tuning, Cohen-Coon controller tuning

**ROOT LOCUS:** Rules for plotting and problems.

10 Hrs

# LABORATORY COMPONENT

- 1. Thermometer
- 2. Single Tank-Step Response
- 3. Non Interacting Tanks-Step Response
- 4. Interacting Tanks-Step Response
- 5. Pressure Vessel
- 6. Single Tank-Impulse Response
- 7. Non Interacting Tanks-Impulse Response
- 8. Interacting Tanks-Impulse Response
- 9. Level Control-P controller, PI controller, PD controller, PID controller
- 10. Valve characteristics

## **TEXTBOOK:**

- 1. Donald R. Coughanowr & Steven E. LeBlanc, Process Systems Analysis and Control, 3<sup>rd</sup> Edition (Indian Edition), McGrawHill Education.
- 2. Instrumentation and Process Control, D.C. Sikdar, 1<sup>st</sup> Edition, Khanna Publishing House, 2019

## **REFERENCE BOOKS:**

- 1. George Stephanopoulos, Chemical Process Control-An Introduction to Theory & Practice, (Indian Edition) Pearson, 2015.
- 2. Coulson& Richardson, Chemical Engineering Vol 3, 3rd Edition-Pergamon Press, 1998.



**Autonomous College under VTU** 

## E BOOKS

- 1. <a href="http://www.ourmumbaicity.com/ebooks">http://www.ourmumbaicity.com/ebooks</a>
- 2. http://www.leka.lt/sites/default/files/dokumentai/process-control.pdf

## **MOOC's &ONLINE COURSES:**

- 1. <a href="https://nptel.ac.in/courses/103/106/103106148/">https://nptel.ac.in/courses/103/106/103106148/</a>
- 2. <a href="https://nptel.ac.in/courses/103/105/103105064/">https://nptel.ac.in/courses/103/105/103105064/</a>
- 3. https://www.mooc-list.com/
- 4. <a href="http://elearning.vtu.ac.in/06IT64.html">http://elearning.vtu.ac.in/06IT64.html</a>

# **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered
- 3. One question each from Unit I, III, IV and two questions each from Unit II and V.

# **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                                                         | PROGRAMME<br>OUTCOMES |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| CO1 | Develop the transfer function of simple first order systems, first order systems in series and second order systems                                     | PO2                   |
| CO2 | Predict the response of first and second order systems                                                                                                  | PO2                   |
| CO3 | Describe the components of a control system, develop its closed loop transfer function and predict the control action of P, PI, PD and PID controllers. | PO2                   |
| CO4 | Comment on the stability of control systems using Root Locus Method, Frequency Response Method and perform rudimentary controller tuning.               | PO2                   |
| CO5 | Conduct experiments in a team and draw inferences.                                                                                                      | PO9                   |
| CO6 | Engage in individual/peer learning and communicate effectively.                                                                                         | PO10                  |

## **ASSESSMENT:**

| Continuo   | us Internal Assessment        | Marks 100% (Weightage 50%)    | Assessment        |
|------------|-------------------------------|-------------------------------|-------------------|
| Theory     | Three Internals (Best of Two) | 40%                           | Course Instructor |
| Component  | Quiz (One Quiz or AAT)        | 10%                           | Course Instructor |
| Laboratory | Laboratory Component          | 50%                           | Course Instructor |
| Component  |                               |                               |                   |
| Se         | mester End Examination (Write | ten Examination for Three Hou | rs)               |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | <b>Laboratory Work</b> | <b>Laboratory Test</b> | <b>Total Marks</b> |
|-------------|--------|--------|------------|------------------------|------------------------|--------------------|
| Max. Marks  | 20     | 20     | 10         | 30                     | 20                     | 100                |
| Reduced CIE | 10     | 10     | 5          | 15                     | 10                     | 50                 |



Autonomous College under VTU

| <b>Course Title</b> |   | MASS TRANSFER-II                         |  |  |  |  |  |  |  |  |  |  |                |            |
|---------------------|---|------------------------------------------|--|--|--|--|--|--|--|--|--|--|----------------|------------|
| <b>Course Code</b>  | 1 | 9 C H 5 D C M T 2 Credits 03 L-T-P 3-0-1 |  |  |  |  |  |  |  |  |  |  |                |            |
| CIE                 |   | 100 marks (50% weightage) SEF            |  |  |  |  |  |  |  |  |  |  | 100 marks (50% | weightage) |

**PREREQUISITES:** Mass Transfer I

**SYLLABUS:** 

## UNIT-I

**GAS LIQUID CONTACTING SYSTEMS:** Liquid and gas dispersion: Types, Construction and working of tray and packed columns, Types and properties of packing, tray efficiencies, HETP and HTU concepts, Concept of flooding, weeping, and entrainment, Comparison of tray and packed columns.

**ABSORPTION:** Solubility of gases in liquids, one component transferred: Material balances, Counter current multistage operations: Isothermal only, Continuous contact equipment: Overall coefficients and transfer units, Dilute solutions, Overall heights of transfer units, Design of packed towers from the data of NTU.

## **UNIT-II**

**DISTILLATION:** Introduction, Vapour liquid equilibrium, Estimation of VLE data, VLE for multicomponent systems, Flash vaporization, Simple distillation, Steam distillation, Continuous rectification, Design of distillation column using McCabe Thiele method for binary mixtures and related problems.

10 Hrs

## **UNIT-III**

**DESIGN OF DISTILLATION COLUMN:** Ponchon-Savarit method, Efficiencies- overall, local, and Murphree plate efficiencies: Reboilers, Use of open steam, Vacuum, Molecular, Extractive and Azeotropic distillations. **06 Hrs** 

## UNIT - IV

**LIQUID-LIQUID EXTRACTION:** Introduction, Ternary equilibrium, Solvent selection, Equipment and flow sheets: Single stage, Multi-stage cross-current, Insoluble systems, Continuous counter current multistage extraction, Equipment: Stage efficiency, stage type extractors (no design aspects): Mixer-settler cascades, Continuous contact equipment: Rotating disc contactor, Pulsed column, and Centrifugal extractor. **07 Hrs** 

## **UNIT-V**

**LEACHING OPERATION:** Introduction, Preparation of solid, Equipment for unsteady state operation and steady state operation: Dorr thickener, Kennedy extractor and Bollman extractor, Methods of calculation: Equilibrium diagrams, Single stage and multi-stage cross and counter current operations, Counter current leaching operation with constant underflow. **06 Hrs** 



Autonomous College under VTU

## LABORATORY COMPONENT

- 1. Single stage adsorption
- 2. Diffusion co-efficient of organic vapour into air
- 3. Drying characteristics
- 4. Wetted wall column
- 5. Multistage adsorption
- 6. Simple distillation
- 7. Packed column distillation
- 8. Single stage Liquid-Liquid extraction
- 9. Solid Dissolution
- 10. Single Stage Leaching

## **TEXTBOOKS:**

- 1. Robert E. Treybal, "Mass transfer operations", 3<sup>rd</sup> Edition, McGraw Hill publications, 1980.
- 2. McCabe & Smith, "Unit operations in chemical engineering", 6<sup>th</sup> Edition, McGraw Hill, publications, 2001.

## **REFERENCE BOOKS:**

- 1. Coulson and Richardson, "Chemical Engineering", Vol II, & IV, 4<sup>th</sup> Edition, Pergamon press, 1998
- 2. Badger, W.L. and Banchero J.T., "Introduction to Chemical Engineering", 3<sup>rd</sup> Edition, McGraw Hill International Edition., 1999.

## **EBOOKS**

- Mass Transfer in Chemical Engineering Processes, by Jozef Markoš, <a href="http://www.e-booksdirectory.com/details.php?ebook=6659">http://www.e-booksdirectory.com/details.php?ebook=6659</a>
- 2. Transport Processes and Unit Operations by Geankoplis, http://chembookneed.blogspot.in/2010/08/transport-processes-and-unitoperations.html

## **MOOC's & ONLINE COURSES:**

- 1. <a href="http://elearning.vtu.ac.in/BT32.html">http://elearning.vtu.ac.in/BT32.html</a>
- 2. http://nptel.ac.in/courses/103104046/

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit III, IV, V, and two questions each from Unit I and II.



Autonomous College under VTU

# **COURSE OUTCOMES (COs):**

|     | RDE OUTCOMES (COs):                                                                                               |                       |
|-----|-------------------------------------------------------------------------------------------------------------------|-----------------------|
|     | COURSE OUTCOMES                                                                                                   | PROGRAMME<br>OUTCOMES |
| CO1 | Apply the understanding of interfacial mass transfer to various gas/liquid/solid contact systems                  | PO2                   |
| CO2 | Acquainted with the knowledge of construction & working of industrial-scale equipment for mass transfer           | PO3                   |
| CO3 | Conversant with the skill to do an elementary design of mass transfer equipment                                   | PO4                   |
| CO4 | Investigate engineering tasks and accustomed to industrial applications of the mass transfer operations           | PO2                   |
| CO5 | Conduct the hands-on experiments in a team; examine the observation and present record.                           | PO9                   |
| CO6 | Perform the experiment and calculations individually and draw/state conclusions based on engineered/plotted data. | PO3                   |

# **ASSESSMENT:**

| Continuou  | is Internal Assessment    | Marks 100% (Weightage 50%)     | Assessment        |
|------------|---------------------------|--------------------------------|-------------------|
| Theory     | Three Internals (Best of  | 40%                            | Course Instructor |
| Component  | Two)                      |                                |                   |
|            | Quiz (One Quiz or AAT)    | 10%                            | Course Instructor |
| Laboratory | Laboratory Component      | 50%                            | Course Instructor |
| Component  |                           |                                |                   |
| Ser        | nester End Examination (W | ritten Examination for Three H | ours)             |

| Component   | Test 1 | Test 2 | Quiz<br>1/AAT | Laboratory<br>Work | Laboratory<br>Test | Total Marks |
|-------------|--------|--------|---------------|--------------------|--------------------|-------------|
| Max. Marks  | 20     | 20     | 10            | 30                 | 20                 | 100         |
| Reduced CIE | 10     | 10     | 5             | 15                 | 10                 | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | CHEMICAL REACTION ENGINEERING-I                                          |      |     |      |    |     |      |      |  |     |                           |  |  |
|---------------------|---|--------------------------------------------------------------------------|------|-----|------|----|-----|------|------|--|-----|---------------------------|--|--|
| <b>Course Code</b>  | 1 | 9   C   H   5   D   C   C   R   1   Credits   03   L - T - P   3 - 0 - 0 |      |     |      |    |     |      |      |  |     |                           |  |  |
| CIE                 |   | 10                                                                       | 00 m | ark | s (5 | 0% | wei | ghta | ige) |  | SEE | 100 marks (50% weightage) |  |  |

**PREREQUISITES:** Engineering Chemistry, Engineering Maths and Technical Chemistry **SYLLABUS:** 

## **UNIT-I**

**INTRODUCTION:** Scope of Chemical Reaction Engineering, Classification of reactions, Rate equation and rate of reaction, Factors affecting rate of reaction, Chemical kinetics and Thermodynamics Equilibrium, Temperature-dependency of rate constant from Arrhenius, Collision and Transition state theories. Molecularity and order of reactions. **07 Hrs** 

## UNIT-II

**NON-ELEMENTARY REACTIONS:** Difference between elementary and non- elementary reactions. Kinetic models and mechanisms for non-elementary reactions and types of reactors. **06 Hrs** 

## **UNIT-III**

**HOMOGENEOUS REACTIONS:** Interpretation of batch reactor data. Constant & Variable Volume batch reactor. Analysis: Differential method, Integral method, half-life method, method of excess and method of isolation (for Reversible and Irreversible reactions up to second order).

**DESIGN OF IDEAL REACTORS:** Concept of ideality, Development of design equations for batch, tubular and stirred tank reactors for both constant and variable volume reactions. Evaluation of rate equations from data obtained in these reactors.

10 Hrs

## UNIT - IV

**MULTIPLE REACTOR SYSTEMS:** Plug flow and Mixed flow reactors in Series & parallel reactions, Reactors of different types and sizes in series, Comparison of Ideal Reactors and General graphical comparison.

**DESIGN OF REACTORS FOR MULTIPLE REACTIONS:** Design of Batch reactor, Plug and Mixed flow reactors for Parallel, Series and Series-Parallel reactions (Only irreversible reactions must be considered).

10 Hrs

## **UNIT - V**

**NON-ISOTHERMAL REACTORS:** Introduction, Material, Energy balances and conversions, Design procedure (For single/simple reactions only). Optimum temperature Progression. **06 Hrs** 

## **TEXTBOOK:**

- 1. Octave Levenspeil, Chemical Reaction Engineering, 3<sup>rd</sup> Edition, John Wiley & Sons, 2001.
- 2. H. Scott Fogler, Elements of Chemical Reaction Engineering. 3<sup>rd</sup> Edition, Prentice Hall, 2001.

## **REFERENCE BOOKS:**

- 1. J.M. Smith, Chemical Engineering Kinetics, 3<sup>rd</sup> Edition, McGraw Hill, 1984.
- 2. K.A. Gavhane, Chemical Reaction Engineering-I, Volume-1, Nirali Prakashan., ISBN-13: 9788185790879, 2011.

## **EBOOKS**

 Fundamentals of Chemical Reaction Engineering by M E Davis: http://authors.library.caltech.edu/25070/1/FundChemReaxEng.pdf



**Autonomous College under VTU** 

- 2. Chemical Reaction Engineering: Beyond the Fundamentals by *Doraiswamy*: <a href="https://www.crcpress.com/Chemical-Reaction-Engineering-Beyond-the-Fundamentals/Doraiswamy-Uner/9781439831229">https://www.crcpress.com/Chemical-Reaction-Engineering-Beyond-the-Fundamentals/Doraiswamy-Uner/9781439831229</a>
- 3. Fundamentals of Chemical Reaction Engineering, Mark E. E. Davis, Robert J. J. Davis <a href="http://www.e-booksdirectory.com/details.php?ebook=2512">http://www.e-booksdirectory.com/details.php?ebook=2512</a>

## **MOOC's & ONLINE COURSES:**

- 1. http://ocw.mit.edu/courses/chemistry/5-68j-kinetics-of-chemical-reactions-spring-2003/index.htm
- 2. <a href="https://nptel.ac.in/courses/103/106/103106116/">https://nptel.ac.in/courses/103/106/103106116/</a>

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Units I, II, and V, and two questions each from Units III and IV.

# **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES (COS).                                                                                             |      |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|
|     | PROGRAMME<br>OUTCOMES                                                                                              |      |  |  |  |  |  |
| CO1 |                                                                                                                    |      |  |  |  |  |  |
|     | mechanism for reaching a sustainable conclusions                                                                   |      |  |  |  |  |  |
| CO2 | Analyse the rate equations for different reactions using suitable mechanism for reaching a sustainable conclusions | PO3  |  |  |  |  |  |
| 000 | Analyse and interpret the data to determine rate equation and estimate                                             | DO 4 |  |  |  |  |  |
| CO3 | PO4                                                                                                                |      |  |  |  |  |  |
|     | the performance equation of ideal systems                                                                          |      |  |  |  |  |  |
| CO4 | PO3                                                                                                                |      |  |  |  |  |  |
|     | and multiple reactions                                                                                             |      |  |  |  |  |  |
| CO5 | Apply the thermodynamic principles to understand the non-isothermal                                                | PO3  |  |  |  |  |  |
|     | behaviour of reactions                                                                                             |      |  |  |  |  |  |
| CO6 | Predict reactor performance for non-isothermal conditions with                                                     | PO4  |  |  |  |  |  |
|     | consideration of public health and safety during operations                                                        |      |  |  |  |  |  |

## ASSESSMENT:

| Continu                                                        | ous Internal Assessments      | Marks 100 (Weightage 50%) | Assessment        |  |  |  |  |
|----------------------------------------------------------------|-------------------------------|---------------------------|-------------------|--|--|--|--|
| Theory                                                         | Three Internals (Best of Two) | 40%                       | Course Instructor |  |  |  |  |
| Component Quiz (Two Quizzes)                                   |                               | 10%                       | Course Instructor |  |  |  |  |
| Semester End Examination (Written Examination for Three Hours) |                               |                           |                   |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total<br>Marks |
|-------------|--------|--------|------------|-------------|----------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100            |
| Reduced CIE | 20     | 20     | 5          | 5           | 50             |



Autonomous College under VTU

| <b>Course Title</b> | CHEMICAL EQUIPMENT DESIGN |     |   |   |   |     |    |               |            |       |           |
|---------------------|---------------------------|-----|---|---|---|-----|----|---------------|------------|-------|-----------|
| <b>Course Code</b>  | 1 9 C                     | H 5 | D | C | C | E   | D  | Credits       | 03         | L-T-P | 3 - 0 - 0 |
| CIE                 | 100 marks (50% weightage) |     |   |   |   | SEE | 10 | 00 marks (50% | weightage) |       |           |

**PREREQUISITES:** Heat & Mass Transfer, Chemical Reaction Engineering.

**SYLLABUS:** 

## UNIT – I

**INTRODUCTION:** General design procedure, Equipment classification. Various components of process equipment, Design parameters and Pressure vessel codes.

**DESIGN CONSIDERATIONS:** Material selection, factors affecting design, Stresses due to static and dynamic loads (Internal & External), Temperature effects and Economic considerations.

**DESIGN OF PRESSURE VESSELS:** Design of shell and other vessel components. Introduction to vessel closures: Formed: Elliptical, Hemispherical and Cylindrical heads. Design of Torispherical heads and related Numerical design problems.

10Hrs

## **UNIT-II**

**VESSEL COMPONENT DESIGN:** Introduction to supports for vessels: Bracket, Lug, Leg, Saddle and Skirt supports and design of Skirt Supports.

FLANGES AND NOZZLES: Introduction to standard and Non-Standard flanges

**DESIGN OF NON- STANDARD FLANGES:** Flange thickness calculation, Gasket selection and design, Bolt selection and calculation, Nozzle design.

10Hrs

## UNIT - III

**REACTION VESSELS:** Introduction, components of a reaction tank with agitator, Types of agitators, baffles, Design of an Anchor type agitator to determine the diameter, thickness, Power requirement with Numerical problems. **07Hrs** 

## **UNIT IV**

**STORAGE VESSELS:** Process conditions and design parameters for storage of volatile, non-volatile fluids & gases, Design of cylindrical tanks with fixed roofs, Annular ring, Baseplate and selection of vessels accessories & mountings. Numerical problems with bill of materials and cost estimation. **07Hrs** 

## UNIT - V

**SPECIFICATIONS OF AUXILLARY EQUIPMENT:** Introduction to Economics, Concepts of P&I Diagrams, P&I Diagram for simple processes, Power and pipe size requirement for processes. **05Hrs** 

## **TEXTBOOKS:**

- 1. V V Mahajani & S B Umarji, "Joshi's Process Equipment Design" Trinity Press, Delhi, India 4<sup>th</sup> Edition.
- 2. B.C. Bhattacharyya, "Introduction to Chemical Equipment Design", 1<sup>st</sup> Edition, CBS Publication, 2008.

## **REFERENCE BOOKS:**

- 1. Don W. Green & Robert H. Perry, "Chemical Engineers Handbook", 8<sup>th</sup> Edition, McGraw Hill, 2014.
- 2. S. D. Dawande, "Process Design of Equipment", Vol 1, Central Techno Publications. 3<sup>rd</sup> Edition, 2003.



Autonomous College under VTU

- 3. Code for United Pressure Vessel, IS 2825, Bureau of Indian standards, New Delhi, 1969.
- 4. Brownell & Young, "Process equipment design" Willy student, 1st Edition, 2009.

## **EBOOKS**

Joshi's Process equipment design
 https://books.google.co.in/books/about/Joshi s Process Equipment Design.html?id=UTC1bc3PCNc
 C&redir esc=v

## **MOOC's and ONLINE COURSES:**

- [1] http://nptel.ac.in/courses/103103027/28
- [2] http://nptel.ac.in/courses/103103027/8

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Units III, IV, and V, and two questions each from Unit I and II

# **COURSE OUTCOMES (COs):**

|                 | COCKED OCT COMES (COS).                                                         |          |  |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------|----------|--|--|--|--|--|
|                 | COURSE OUTCOMES                                                                 |          |  |  |  |  |  |
|                 |                                                                                 | OUTCOMES |  |  |  |  |  |
| CO1             | Realize the practical applications of basic engineering design principles using | PO2      |  |  |  |  |  |
|                 | the first principles of mathematics and engineering sciences.                   |          |  |  |  |  |  |
| CO <sub>2</sub> | Apply reasoning and select suitable materials based on the process to assess    | PO6      |  |  |  |  |  |
|                 | the health and safety of society.                                               |          |  |  |  |  |  |
| CO3             | Design of various reaction/pressure vessel components with environmental        | PO3      |  |  |  |  |  |
|                 | consideration.                                                                  |          |  |  |  |  |  |
| CO4             | Recognize and design the various types of support, flange, agitator and other   | PO3      |  |  |  |  |  |
|                 | vessel accessories required in process vessels by adjudging the various factors |          |  |  |  |  |  |
|                 | influencing it.                                                                 |          |  |  |  |  |  |
| CO5             | Estimate the sizing of pumps & storage vessel with its accessories to provide   | PO4      |  |  |  |  |  |
|                 | the valid conclusions for their use.                                            |          |  |  |  |  |  |
| CO6             | Incorporate economic consideration while designing the required auxiliary       | PO11     |  |  |  |  |  |
|                 | equipment.                                                                      |          |  |  |  |  |  |

## **ASSESSMENT:**

| Continuou                                                      | s Internal Assessments    | Marks 100<br>(Weightage 50%) | Assessment<br>By  |  |  |  |  |
|----------------------------------------------------------------|---------------------------|------------------------------|-------------------|--|--|--|--|
| Theory Component Three Internals (Best of Two)                 |                           | 80%                          | Course instructor |  |  |  |  |
|                                                                | Quiz (Two Quizzes or AAT) | 20%                          | Course instructor |  |  |  |  |
| Semester End Examination (Written Examination for Three Hours) |                           |                              |                   |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |                                                         | OPERATIONS RESEARCH                      |  |  |  |  |  |  |  |            |
|---------------------|---------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|--|------------|
| <b>Course Code</b>  | 1                                                       | 9 C H 5 D E L B 1 Credits 03 L-T-P 3-0-0 |  |  |  |  |  |  |  |            |
| CIE                 | 100 marks (50% weightage) SEE 100 marks (50% weightage) |                                          |  |  |  |  |  |  |  | weightage) |

**PREREQUISITES:** Engineering Mathematics

**SYLLABUS:** 

#### UNIT - I

**INTRODUCTION:** Definition. Scope of Operations Research, Approach and limitations of O.R-Models, Characteristics and phases of O.R

**LINEAR PROGRAMMING PROBLEMS:** Mathematical formulation of L.P, Problems and Graphical solution method. **06 Hrs** 

### UNIT – II

**ASSIGNMENT PROBLEMS:** Balanced and Unbalanced assignment problems, Maximization assignment problems, traveling salesman problems. **06 Hrs** 

#### **UNIT-III**

**TRANSPORTATION PROBLEM**: Transportation Problems definition, Linear form, Basic feasible solutions by different methods, finding optimal solution, Solution methods: North West corner method, least cost method, Vogel's approximation method. Degeneracy in transportation, Modified Distribution method, Unbalanced problems and profit maximization problems.

10 Hrs

### **UNIT-IV**

**SEQUENCING:** Johnson's algorithm, njobs-2machines, njobs-3, machines and njobs-n machines without passing sequence, 2jobs-n, machines, Graphical solutions. **07 Hrs** 

### UNIT -V

**PERT-CPM TECHNIQUES:** Network construction, determining time estimates and critical path, in network analysis, Variance and probability of completing the project, Calculation of different floats, Project duration, Crashing of simple networks.

10 Hrs

### **TEXTBOOKS:**

- 1. S.D. Sharma, Operations Research- Theory, Methods and Applications, 8<sup>th</sup> Edition, Kedarnath & Co, 2012, ISBN-13: 978-9380803388
- 2. S Kalavathy, Operations Research, 4<sup>th</sup> Edition, Vikas Publishing House, 2012, ISBN-13: 978-9325963474.

## **REFERENCE BOOKS:**

- 1. L.S. Srinath, Introduction to Pert and CPM, 3<sup>rd</sup> Edition, East West, 1998.
- 2. J.K. Sharma, Operations Research- Theroy and <u>Applications</u>, Laxmi Publications, 6<sup>th</sup> Edition, 2017, ISBN-13: 978-9385935145.
- 3. Kanti Swaroop, P. K. Gupta and Manmohan, Operations Research, 9<sup>th</sup> Edition, Sultan Chand and Sons, 2019, ISBN-13: 978-9351611011.

### E-BOOKS

- 1. http://www.faadooengineers.com/threads/3345-Operations-Research-(OR)-Ebook
- 2. http://www.freetechbooks.com/operations-research-f54.html



**Autonomous College under VTU** 

## **MOOC's & ONLINE COURSES:**

- 1. <a href="https://www.springboard.com/topic/operations-research">https://www.springboard.com/topic/operations-research</a>
- 2. https://www.quora.com/Are-there-good-online-courses-for-Operations-Research

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, II, IV and two questions each from Unit III and V.

## **COURSE OUTCOMES (COs):**

|      | COURSE OUTCOMES                                                                                                     | PROGRAMME<br>OUTCOMES |
|------|---------------------------------------------------------------------------------------------------------------------|-----------------------|
| CO 1 | Understand the mathematical tools that are needed to solve optimization problems.                                   | PO2                   |
| CO 2 | Identify and develop operational research models for real complex problems.                                         | PO3                   |
| CO 3 | Develop the model to solve and analyze the results for decision-making processes in Management Engineering.         | PO4                   |
| CO 4 | Select the best strategy based on decision criteria for uncertain real-world problems with sustainable solutions.   | PO6                   |
| CO 5 | Apply the fundamentals of operations research methods for modern management techniques.                             | PO10                  |
| CO 6 | Understand the fundamentals of operations research methods to solve economic issues, which help to make a decision. | PO11                  |

#### ASSESSMENT.

| Conti            | Continuous Internal Assessments                                |     |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------|-----|--|--|--|--|--|--|
| Theory Component | Three Internals Test (Best of Two)                             | 80% |  |  |  |  |  |  |
|                  | Quiz (Two Quizzes or AAT)                                      | 20% |  |  |  |  |  |  |
| Semester         | Semester End Examination (Written Examination for Three Hours) |     |  |  |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | <b>Total Marks</b> |
|-------------|--------|--------|------------|-------------|--------------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100                |
| Reduced CIE | 20     | 20     | 5          | 5           | 50                 |



Autonomous College under VTU

| <b>Course Title</b> |   | OPTIMIZATION OF CHEMICAL PROCESSES                      |  |  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Course Code         | 1 | 9 C H 5 D E L B 2 Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |  |

**PREREQUISITES:** Fluid Mechanics, Heat Transfer, Mass Transfer, and Applied Mathematics **SYLLABUS:** 

### **UNIT-I**

**INTRODUCTION AND PROBLEM FORMULATION:** Scope and hierarchy of optimization, essential features of optimization problems, procedure for solving optimization problems, and obstacles to optimization.

**ECONOMIC OPTIMIZATION:** Economic Objective Functions, Time Value of Money, Measures of Profitability, and related Problems. **07Hrs** 

#### **UNIT-II**

**OPTIMIZATION THEORY AND METHODS:** Continuity of functions, NLP problem statement, convexity and its applications, optimizing a Function of one variable, Scanning and Bracketing Procedures, Newton and Quasi-Newton Methods for one dimensional and multidimensional, and Polynomial Approximation Methods.

06Hrs

### **UNIT-III**

**LINEAR PROGRAMMING AND APPLICATIONS:** Geometry of Linear Programs, Basic Linear Programming, Simplex Algorithm, barrier method, Sensitivity Analysis, Linear Mixed Integer Programs. **Mixed Integer Programming:** Problem Formulation, Branch-and-Bound Methods, Problems on MINLP. **06Hrs** 

## **UNIT-IV**

**HEAT TRANSFER AND ENERGY CONSERVATION:** Optimum recovery of waste heat, optimum shell and tube heat exchanger design, optimization of heat exchanger networks, optimization of multistage evaporators, optimization of liquid-liquid extraction processes, optimal design and operation of staged distillation columns.

10Hrs

### **UNIT-V**

**FLUID FLOW SYSTEMS:** Optimal pipe diameter, minimum work of gas compression, economic operation of fixed bed filter, optimal design of gas transmission network, optimal design and operation of chemical reactors.

10Hrs

## **TEXTBOOKS:**

- 1. T.F.Edger and D.M.Himmelblau, "Optimization of Chemical Processes", Mc.Graw Hill, 2001.
- 2. A. Ravindran, G. V. Reklaitis, "Engineering Optimization: Methods and Applications", Wiley-InterScience publication, 1983.

## **REFERENCE BOOKS**

- 1. Dominic C. Y. Foo, "Recent Advances in Sustainable Process Design and Optimization", World Scientific, 2012.
- 2. Kalyanmov Deb, "Optimization for Engineering Design", John Wiley, 1995.



Autonomous College under VTU

### E-BOOKS

1. J. K. Walters P. K. Andow A.V. Bridgwater, "Process Optimisation" https://www.elsevier.com/books/process-optimisation/walters/978-0-85295-205-4

2. Frank (Xin X.) Zhu, "Energy and Process Optimization for the Process Industries", <a href="https://onlinelibrary.wiley.com/doi/book/10.1002/9781118782507">https://onlinelibrary.wiley.com/doi/book/10.1002/9781118782507</a>

### **MOOC's and ONLINE COURSES:**

**1.** Process Plant Optimization Technology and Continual Improvement: <a href="http://petroknowledge.com/sign-up-pdf?dl=course&file=ME175">http://petroknowledge.com/sign-up-pdf?dl=course&file=ME175</a>.

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question from each unit.
- 4. One question each from Unit I, II, III and two questions each from Unit IV and V.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                            | PROGRAMME |
|-----|----------------------------------------------------------------------------|-----------|
|     |                                                                            | OUTCOMES  |
| CO1 | Apply the knowledge of Mathematics in arriving at optimum conditions       | PO2       |
| CO2 | Realize the need of optimization as a part of Process Industries.          | PO7       |
| CO3 | Appreciate the Importance and Economic constraints involved in             | PO11      |
|     | Industrial Processes                                                       |           |
| CO4 | Know the intricacies involved in optimal operation by utilizing resources  | PO6       |
|     | from waste.                                                                |           |
| CO5 | Envision the benefits of waste recovery concerning economics and society   | PO7       |
| CO6 | Envisage the requirement of optimal sizing of process utilities and inputs | PO8       |
|     | for economic operation of processes                                        |           |

### **ASSESSMENT:**

| Continu   | ious Internal Assessments                                      | Marks 100 (Weightage 50%) | Assessment By     |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------|---------------------------|-------------------|--|--|--|--|--|--|
| Theory    | Three Internals( Best of Two)                                  | 80%                       | Course instructor |  |  |  |  |  |  |
| Component | Quiz (Two Quizzes or AAT)                                      | 20%                       | Course instructor |  |  |  |  |  |  |
|           |                                                                |                           |                   |  |  |  |  |  |  |
|           | Semester End Examination (Written Examination for Three Hours) |                           |                   |  |  |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



**Autonomous College under VTU** 

| <b>Course Title</b> |   | PETROLEUM REFINING                                      |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 9 C H 5 D E L C 1 Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |

**PREREQUISITES:** Engineering Chemistry and Technical Chemistry

**SYLLABUS:** 

#### UNIT-I

**COMPOSITION OF CRUDE:** Classification, Evaluation of petroleum, UOP-k factor, TBP analysis, EFV analysis, Average boiling point, ASTM curves, Thermal properties of petroleum fractions. **06 Hrs** 

#### **UNIT-II**

**PRODUCTS - PROPERTIES AND TEST METHODS**: Crude Distillation, Products from crude; Gasoline: ASTM Distillation, Reid Vapor Pressure Analysis, Octane Number, Oxidation stability, Additives; Kerosene: Flash point, Fire point, Smoke Point, Burning Quality; Diesel Fuels: Classification, Pour Point, Aniline Point, Viscosity, Additives for diesel; Lube Oils: Categories, Carbon Residue: Conradson Residue, Rams bottom Method and Bitumen: Softening Point, Penetration Index. **07 Hrs** 

### **UNIT-III**

**CRUDE PRETREATMENT:** Pumping of crude oil, Dehydration of crude: Chemical, gravity, centrifugal, electrical de-salter.

**TREATMENT TECHNIQUES:** Types of impurities present, Sweetening operations for gases: Ethanolamine Treatment, Stretford Operation; Treatment of gasoline: Catalytic desulphurization; and Treatment of kerosene: Liquid SO<sub>2</sub> extraction of aromatics.

## **UNIT - IV**

**CATALYTIC CRACKING:** Catalytic cracking: Carbonium ion chemistry, catalysts, reaction variables; Fluid catalytic cracking - Texaco, ESSO, Kellog; Naphtha cracking; and Hydrocracking: Chemistry, catalysts, reaction conditions.

CATALYTIC REFORMING: Chemistry, Reaction variables, catalysts, feedstock requirements.10 Hrs

### **UNIT-V**

**THERMAL PROCESSES:** Thermal cracking: Chemistry, theory, properties of cracked materials and factors influencing the properties of cracked materials, Visbreaking, Dubb's two coil cracking.

**Coking:** Types of coking processes, Dubb's two coil coking, delayed coking, fluid coking **06 Hrs** 

### **TEXT BOOK:**

- 1. Bhaskara Rao, Modern Petroleum Refining Processes Oxford & IBH Publication, 3<sup>rd</sup> Edition, Reprint, 1999.
- 2. Nelson, Petroleum Refinery Engineering McGraw Hill, 4<sup>th</sup> Edition, Reprint, 1982.

### **REFERENCE BOOKS:**

- 1. Ram Prasad, Petroleum Refining Technology- Khanna Publishers, 1<sup>st</sup> Edition, 2000.
- 2. Sland W.F. and Davidson R.L., Petroleum Processing McGraw Hill, 1967



**Autonomous College under VTU** 

## **MOOC's &ONLINE COURSES:**

- 1. http://nptel.ac.in/courses/103102022/1
- 2. https://www.mooc-list.com/tags/refining?static=true
- 3. https://www.class-central.com/subject/engineering

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered
- 3. One question each from Unit I, II, V and two questions each from Unit III and IV.

# **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                     | PROGRAMME<br>OUTCOMES |
|-----|---------------------------------------------------------------------|-----------------------|
| CO1 | Possess knowledge of the composition, properties, and evaluation    | PO1                   |
|     | of crude and its fractions.                                         |                       |
| CO2 | Ability to describe the properties of products and their test       | PO2                   |
|     | methods.                                                            |                       |
| CO3 | Identify the pre-treatment and treatment processes for fractions of | PO2                   |
|     | crude.                                                              |                       |
| CO4 | Possess introductory knowledge of the technologies for converting   | PO3                   |
|     | crude to valuable products                                          |                       |
| CO5 | Demonstrate the sequence of operations involved in a process        | PO2                   |
| CO6 | Acquainted with the environmental impact and the need for           | PO7                   |
|     | sustainability in refining                                          |                       |

## **ASSESSMENT:**

| Contin    | uous Internal Assessment                                       | Marks 100%<br>(Weightage 50%) | Assessment        |  |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------|-------------------------------|-------------------|--|--|--|--|--|--|--|
| Theory    | Three Internals (Best of Two)                                  | 80%                           | Course Instructor |  |  |  |  |  |  |  |
| Component | Quiz (One Quiz or AAT)                                         | 20%                           | Course Instructor |  |  |  |  |  |  |  |
| Se        | Semester End Examination (Written Examination for Three Hours) |                               |                   |  |  |  |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | RECYCLE AND RESUE OF WASTE MATERIALS FOR SUSTAINABLE |     |      |       |     |       |      |  |       |           |       |             |           |
|---------------------|---|------------------------------------------------------|-----|------|-------|-----|-------|------|--|-------|-----------|-------|-------------|-----------|
|                     |   | DEVELOPMENT                                          |     |      |       |     |       |      |  |       |           |       |             |           |
| <b>Course Code</b>  | 1 | 1 9 C H 5 D E L C 2 Credits 03 L-T-P                 |     |      |       |     |       |      |  | L-T-P | 3 - 0 - 0 |       |             |           |
| CIE                 |   |                                                      | 100 | mark | s (50 | % w | eight | age) |  |       | SEE       | 100 m | arks (50% w | eightage) |

**PREREQUISITES:** Engineering Chemistry and Engineering Physics,

**SYLLABUS:** 

### UNIT- I

CURRENT PRACTICE AND FUTURE SUSTAINABILITY: Introduction to waste management and treatment; Incineration, Landfill, Zero pollution and 7Rs rule, Life cycle analysis and extended producer responsibility and Cradle-to-cradle concept.

06 Hrs

### **UNIT-II**

**CLEANER PRODUCTION:** Promoting cleaner production, Benefits of cleaner production, Obstacles to cleaner production and solutions, Cleaner production techniques, Cleaner production opportunity assessment, Cleaner production case studies.

10 Hrs

#### **UNIT-III**

**SOLID WASTE SOURCE REDUCTION AND RECYCLING:** Solid Waste Source Reduction; Paper Recycling, Metals Recycling, Plastics Recycling, Glass Container Recycling, Environmental Impacts and benefits of recycling.

10 Hrs

#### **UNIT-IV**

SUSTAINABILITY OF INDUSTRIAL WASTE MANAGEMENT: Cement industry case study; Iron and steel industry case study; Aluminium foundries case study; petroleum sector case study; Integrated sugar industry case study.

07 Hrs

### **UNIT - V**

COSTS AND MANAGEMENT OF WASTE FACILITIES AND SYSTEMS: Capital and Operating Costs of Facilities; Lifecycle Cost Analysis, Management Responsibilities, Pre-Consumer and Post-Consumer Recyclable Waste, Markets for Recyclables.

06 Hrs

### **TEXTBOOKS:**

- 1. Salah M. El-Haggar, Sustainable Industrial Design and Waste Management Cradle-to-cradle for Sustainable Development, 1<sup>st</sup> Edition, Elsevier Publications, 2007.
- 2. Charles R. Rhyner, Leander J. Schwartz, Robert B. Wenger, Mary G. Kohrell, Waste management and resource recovery, 1<sup>st</sup> Edition, CRC Press, 1999.

### **REFERENCE BOOKS:**

- 1. C. S. Rao, Environmental Pollution Control Engineering, New Age International Publisher, 2011.
- 2. Richard Ian Stessel, Recycling and Resource Recovery Engineering-Principles of Waste Processing, Springer, 1996.

#### E-BOOKS

- 1. Air Pollution by M N Rao and HV N Rao: <a href="http://www.avlib.in/ebook/title/air-pollution-mn-rao-and-hvn-rao-.html">http://www.avlib.in/ebook/title/air-pollution-mn-rao-and-hvn-rao-.html</a>
- 2. <a href="https://www.free-ebooks.net/ebook/introduction-to-wastewater-treatment">https://www.free-ebooks.net/ebook/introduction-to-wastewater-treatment</a>



**Autonomous College under VTU** 

## **MOOC's & ONLINE COURSES:**

- 1. <a href="https://sustainabledevelopment.un.org/content/dsd/csd/csd\_pdfs/csd-9/learningcentre/presentations/May%209%20am/1%20-%20Learning Centre 9May ppt Mohanty.pdf">https://sustainabledevelopment.un.org/content/dsd/csd/csd\_pdfs/csd-9/learningcentre/presentations/May%209%20am/1%20-%20Learning Centre 9May ppt Mohanty.pdf</a>
- 2. https://nptel.ac.in/courses/120108005/module6/lecture6.pdf

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, IV & V and two questions each from Unit II and III

## **COURSE OUTCOMES (COs):**

|     | SE COTOMES (COS):                                                               |           |
|-----|---------------------------------------------------------------------------------|-----------|
|     | COURSE OUTCOMES                                                                 | Programme |
|     |                                                                                 | Outcomes  |
| CO1 | Identify the appropriate remedial engineering conceptual design to solve the    | PO3       |
|     | waste management problem.                                                       |           |
| CO2 | Know the responsibility of an individual to engineer the reduction and reuse of | PO6       |
|     | waste for societal benefit.                                                     |           |
| CO3 | Acquainted with the knowledge on the environmental impact of waste and know     | PO7       |
|     | its remedial processes for sustainable development.                             |           |
| CO4 | Recognize the economic impact on the cost of production by adopting "Reduce,    | PO11      |
|     | Recycle and Reuse".                                                             |           |
| CO5 | Implement the concept of process integration to produce value-added products    | PO7       |
|     | that can be obtained from industrial waste.                                     |           |
| CO6 | Accustomed to the generation and management of waste with advances in           | PO12      |
|     | process technology and device new waste management techniques.                  |           |

## **ASSESSMENT:**

| Contin    | uous Internal Assessments                                       | Marks 100 (Weightage 50%) | Assessment        |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------------|---------------------------|-------------------|--|--|--|--|--|--|
| Theory    | Three Internals( Best of Two)                                   | 80%                       | Course instructor |  |  |  |  |  |  |
| Component | Quiz (Two Quizzes or AAT)                                       | 20%                       | Course instructor |  |  |  |  |  |  |
|           | Semester End Examination ( Written Examination for Three Hours) |                           |                   |  |  |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | <b>Total Marks</b> |
|-------------|--------|--------|------------|-------------|--------------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100                |
| Reduced CIE | 20     | 20     | 5          | 5           | 50                 |



**Autonomous College under VTU** 

| <b>Course Title</b> |   | PROJECT USING MODERN SIMULATION SOFTWARE TOOLS |  |  |  |  |  |     |  |     |   |               |            |
|---------------------|---|------------------------------------------------|--|--|--|--|--|-----|--|-----|---|---------------|------------|
| <b>Course Code</b>  | 1 | 9 C H 5 D C P W 1 Credits 02 L-T-P 0-0-2       |  |  |  |  |  |     |  |     |   |               |            |
| CIE                 |   | 100 marks (50% weightage)                      |  |  |  |  |  | ge) |  | SEE | 1 | 00 marks (50% | weightage) |

## **PREREQUISITE:** Core subjects from the preceding semesters.

A group of students will be assigned/select one case study or an analytical problem, which they need to solve under the supervision of a guide/faculty using modern IT tools. The project to be assigned at the beginning of the fifth semester. The project group should complete the preliminary literature survey & plan to execute the project and submit the synopsis at the end of the first month. The project work with a report should be completed by the end of the fifth semester. This project will be evaluated by a committee constituted by the HoD for internal assessment.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                                                                      | PROGRAMME |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | COCKSE OUTCOMES                                                                                                                                                      | OUTCOMES  |
| CO1 | Select a suitable case study or an analytical problem amongst the various options available through a literature survey.                                             | PO4       |
| CO2 | Apply the modern Engineering and IT tools for prediction and modelling                                                                                               | PO5       |
| CO3 |                                                                                                                                                                      | PO6       |
| CO4 | or without multidisciplinary facets.  Demonstrate the need for sustainability for an optimal process.                                                                | PO7       |
| CO5 | Develop the ability to function effectively as an individual, and as a member or leader in diverse teams.                                                            | PO9       |
| CO6 | Make effective presentations and communicate effectively on the activities carried during the project work with the engineering community and with society at large. | PO10      |

## **ASSESSMENT:**

| Contin    | uous Internal Assessments                                            | Marks 100%<br>(Weightage 50%) | Assessment                   |  |  |  |  |  |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------|--|--|--|--|--|
| Practical | Presentation 1                                                       | 40%                           | Committee constituted by HOD |  |  |  |  |  |
| Component | Presentation 2                                                       | 40%                           | Committee constituted by HOD |  |  |  |  |  |
|           | Report and Training Undergone                                        | 20%                           | Course Instructor/ Guide     |  |  |  |  |  |
|           | Semester End Examination – Presentation and write up (Weightage 50%) |                               |                              |  |  |  |  |  |

| Component   | Presentation 1 | Presentation 2 | Report | Total Marks |
|-------------|----------------|----------------|--------|-------------|
| Max. Marks  | 40             | 40             | 20     | 100         |
| Reduced CIE | 20             | 20             | 10     | 50          |



Autonomous College under VTU

### SIXTH SEMESTER

| <b>Course Title</b> |    | PROCESS EQUIPMENT DESIGN                                |  |  |  |  |  |  |         |
|---------------------|----|---------------------------------------------------------|--|--|--|--|--|--|---------|
| <b>Course Code</b>  | 1  | 9 C H 6 D C P E D Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |         |
| CIE                 | 10 | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  | ghtage) |

**PREREQUISITES:** Heat Transfer, Mass Transfer, and Chemical Equipment Design **SYLLABUS:** 

The detailed chemical engineering process design of the following equipment. The necessary aspects studied in "Chemical Equipment Design" are to be applied for mechanical design. The use of standard codebooks is to be taught. The detailed dimensional drawings shall include a sectional front view, top/side view depending on equipment, and major component drawing with dimensions and the part template.

#### **UNIT I**

**DESIGN OF HEAT TRANSFER EQUIPMENT:** Double pipe Heat exchanger, Shell and Tube Heat exchanger, Horizontal Condenser, Vertical condenser, and Rotary Dryer. **20Hrs** 

#### **UNIT II**

**DESIGN OF MASS TRANSFER EQUIPMENT:** Single Effect Evaporator, Bubble Cap Distillation Column, Packed Bed Absorption Column.

19Hrs

### **NOTE:**

- The question paper contains two full design problems (100 Marks each) for the equipment from the above list and student to answer anyone.
- One question should be framed from each unit.
- A choice between Unit 1 and Unit 2
- Perry's Chemical Engineers Handbook and IS Code 4503 for heat exchangers shall be allowed in the examination as reference.

## **TEXTBOOKS:**

- 1. S B Thakore and B I Bhatt, Introduction to Process Engineering and Design, 3<sup>rd</sup> Edition, Tata McGraw-Hill, 2011.
- 2. Donald Q. Kern, Process Heat Transfer, McGraw Hill, 1997.
- 3. Robert E Treybal, Mass Transfer Operations, McGraw Hill, 1981.

#### **REFERENCE BOOKS:**

- 1. R. H. Perry and D. W. Green, Chemical Engineering Handbook, 7<sup>th</sup> Edition, McGraw Hill, 1998.
- 2. J. M. Coulson and J. F. Richardson, Chemical Engineering, Vol. 6, Pergamon Press, 1993.
- 3. Shell and Tube Heat exchanger IS Code, IS 4503, BIS, New Delhi, 1969.



Autonomous College under VTU

## **E BOOKS**

- S. D. Dawande, Process Design of Equipment, Vol. 2, 3<sup>rd</sup> Edition, Central Techno Publications, 2003.
   R. H. Perry and D. W. Green, Chemical Engineering Handbook, 7<sup>th</sup> Edition, McGraw Hill, 1998.

## **MOOC's & ONLINE COURSES:**

- 1) http://nptel.ac.in/courses/103103027/
- 2) https://ocw.mit.edu/courses/chemical-engineering/

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have two questions from all the units.
- 2. One question to be answered.
- 3. One question each from Unit I and Unit II.

# **COURSE OUTCOMES (COs):**

|                 | COURSE OUTCOMES                                                             |      |  |  |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------|------|--|--|--|--|--|--|--|
| CO1             | Congregate the data from the literature, Handbook, Codebook                 | PO2  |  |  |  |  |  |  |  |
| CO <sub>2</sub> | Analyze, interpret the literature data required for the functional design   | PO4  |  |  |  |  |  |  |  |
| CO3             | Design the heat and mass transfer equipment                                 | PO3  |  |  |  |  |  |  |  |
| CO4             | Select the details of accessories based on technical needs and availability | PO12 |  |  |  |  |  |  |  |
| CO5             | Decide on the incorporation of inherent safety standards                    | PO8  |  |  |  |  |  |  |  |
| CO6             | Draft the equipment as per the design                                       | PO3  |  |  |  |  |  |  |  |

### **ASSESSMENT:**

| Conti     | nuous Internal Assessments                                     | Marks 100<br>(Weightage 50%) | Assessment<br>By  |  |  |  |  |  |
|-----------|----------------------------------------------------------------|------------------------------|-------------------|--|--|--|--|--|
| Theory    | Three Internals( Best of Two)                                  | 80%                          | Course instructor |  |  |  |  |  |
| Component | Quiz (Two Quizzes or AAT)                                      | 20%                          | Course instructor |  |  |  |  |  |
| Ser       | Semester End Examination (Written Examination for Three Hours) |                              |                   |  |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | PROCESS MODELLING & SIMULATION |   |   |   |   |   |   |     |   |         |    |                |            |
|---------------------|---|--------------------------------|---|---|---|---|---|---|-----|---|---------|----|----------------|------------|
| <b>Course Code</b>  | 1 | 9                              | C | H | 6 | D | C | P | M   | S | Credits | 04 | L-T-P          | 3 - 0 - 1  |
| CIE                 |   | 100 marks (50% weightage)      |   |   |   |   |   |   | ge) |   | SEE     |    | 100 marks (50% | weightage) |

**PREREQUISITES:** Chemical reaction engineering, Heat transfer, Mass transfer, Thermodynamics and Numerical techniques

**SYLLABUS:** 

#### UNIT - I

**FUNDAMENTALS OF MODELING:** Introduction to process modeling, needs of model and their classification, Model building, Precautions in model building, Principles of model formulation, Fundamental laws, Review of shell balance approach, Models based on thermodynamic principles, Concept of the degree of freedom analysis, Concept of equilibrium and kinetics. **06 Hrs** 

### **UNIT-II**

MODELS OF REACTORS: Batch reactor model, Semi Batch reactor, Interacting and Non-Interacting Tanks, two heated tanks, Gas phase pressurized CSTR, Non isothermal CSTR: Perfectly mixed cooling jacket, Plug flow cooling jacket, Lumped Jacket Model, Lumped metal model, Reactor model with mass transfer, Bioreactor models. Fluidized bed reactor model, Trickle Bed Reactor Model.

10 Hrs

### **UNIT - III**

MODELS OF HEAT TRANSFER EQUIPMENT: One- and Two-dimensional heat conduction, Numerical solution of one-dimensional transient heat conduction in a rectangular slab, cylinder, and sphere using the finite difference method.

07 Hrs

#### UNIT - IV

MODELS OF SEPARATION PROCESSES: Development of detailed Single-Component Vaporizer, Development of detailed mathematical models of multicomponent flash drum, Binary Batch & Continuous Distillation Column, Multicomponent non-ideal distillation column, Batch distillation with holdup, Activity coefficient model (Wilson, NRTL, UNIQUAC, UNIFAC), Equation of State Models (RK, SRK, PR).

#### **UNIT - V**

**SIMULATION:** Introduction to process simulation, Tools of simulation- Features, Advantages and limitations; Approaches of simulation: Modular approach and Equation solving approach, Flow sheeting, Introduction to dynamic simulation and process optimization. **06 Hrs** 



Autonomous College under VTU

### LABORATORY COMPONENT

Simulation Using UniSim® Simulation Software

- 1. Simulation of Mixer, Heater and Pump.
- 2. Simulation of Heat Exchanger
- 3. Simulation of Flash Drum for Binary Mixture
- 4. Simulation of Distillation Column
- 5. Simulation of Refrigeration Gas Plant
- 6. Simulation of Conversion Reactor
- 7. Simulation of Equilibrium Reactor
- 8. Simulation of Two Stage Compression System
- 9. Simulation of Absorption Column
- 10. Oil Characterization / Introduction to Dynamic Simulation

### **TEXT BOOKS:**

- 1. William. L Luyben, "Process Modeling Simulation and Control for Chemical Engineering", 2<sup>nd</sup> Edition., McGraw Hill, 1990.
- 2. B. V. Babu, "Process Plant Simulation", Oxford University Press, 2004.

### **REFERENECE BOOKS:**

- 1. R.W. Gaikwad & Dr. Dhirendra, "Process Modelling and Simulation", Denett & Co., 2006
- 2. Amiya K. Jana, "Chemical Process Modelling and Computer Simulation", PHI Learning Pvt. Ltd., 2011
- 3. Pradeep Ahuja, "Introduction to Numerical Methods in Chemical Engineering", PHI Learning Pvt. Ltd., 2010.

### **E BOOKS**

- 1. Chemical Process Technology and Simulation by Srikumar Koyikkal, ISBN-13: 978-8120347090
- 2. Enes Kadic, Theodore J. Heindel, "An Introduction to Bioreactor Hydrodynamics and Gas-Liquid Mass Transfer", Willey, April 2014.

## **MOOC's &ONLINE COURSES:**

- 1. <a href="http://nptel.ac.in/courses/103107096/">http://nptel.ac.in/courses/103107096/</a>
- 2. <a href="http://www.myopencourses.com/subject/process-modelling-and-simulation-1">http://www.myopencourses.com/subject/process-modelling-and-simulation-1</a>

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, III, V and two questions each from Unit II and IV.



**Autonomous College under VTU** 

# **COURSE OUTCOMES (COs):**

| 0001 | ASE OF FEMALES (COS):                                                                                                               |                       |
|------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|      | COURSE OUTCOMES                                                                                                                     | PROGRAMME<br>OUTCOMES |
| CO1  | Comprehend the fundamental laws and Thermodynamic principles required for formulating a mathematical model.                         | PO2                   |
| CO2  | Apply the fundamental laws using engineering concepts to identify steps in building mathematical models for chemical processes.     | PO3                   |
| CO3  | Analyze and pursue suitable shell balance approach to build models for complex chemical processes                                   | PO4                   |
| CO4  | Apply the simulation principles to solve built-in models for chemical processes individually or in a team and interpret the result. | PO6                   |
| CO5  | Conduct simulation experiments individually using UNISIM.                                                                           | PO5                   |
| CO6  | Recognize the need for learning simulation tools in the context of technological change.                                            | PO12                  |

# **ASSESSMENT:**

| Contin       | uous Internal Assessments                                      | Marks 100% (Weightage 50%) | Assessment        |  |  |  |  |  |  |
|--------------|----------------------------------------------------------------|----------------------------|-------------------|--|--|--|--|--|--|
| Theory       | Three Internals (Best of Two)                                  | 40%                        | Course Instructor |  |  |  |  |  |  |
| Component    | Quiz (Two Quizzes)                                             | 10%                        | Course Instructor |  |  |  |  |  |  |
| Laboratory C | Component                                                      | 50%                        | Course Instructor |  |  |  |  |  |  |
|              | Semester End Examination (Written Examination for Three Hours) |                            |                   |  |  |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz<br>1/AAT | Laboratory<br>Work | Laboratory<br>Test | Total Marks |
|-------------|--------|--------|---------------|--------------------|--------------------|-------------|
| Max. Marks  | 20     | 20     | 10            | 30                 | 20                 | 100         |
| Reduced CIE | 10     | 10     | 5             | 15                 | 10                 | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | CHEMICAL REACTION ENGINEERING-II |                                          |  |  |  |  |  |     |  |     |                           |  |  |
|---------------------|---|----------------------------------|------------------------------------------|--|--|--|--|--|-----|--|-----|---------------------------|--|--|
| <b>Course Code</b>  | 1 | 9                                | 9 C H 6 D C C R 2 Credits 04 L-T-P 3-0-1 |  |  |  |  |  |     |  |     |                           |  |  |
| CIE                 |   | 100 marks (50% weightage)        |                                          |  |  |  |  |  | ge) |  | SEE | 100 marks (50% weightage) |  |  |

**PREREQUISITES:** Chemical Reaction Engineering-1 and Engineering Mathematics

**SYLLABUS:** 

#### UNIT - I

BASICS of NON-IDEAL FLOW: Importance & interpretation of RTD, C, E & F curves & Statistical interpretation, Dispersion model. Tanks in series model, Conversion in non- ideal flow reactors for simple 06 Hrs systems.

### UNIT - II

NON-CATALYTIC SYSTEMS: Introduction to Fluid-Fluid reactions, Kinetics for straight mass transfer without reaction, Kinetics for direct mass transfer with the reaction for all types of reactions, the significance of Hatta Number and related problems on fluid-fluid reactions.

FLUID PARTICLE REACTIONS: Introduction to Fluid-Particle reactions, selection of suitable model, Kinetics for different rate-controlling steps for spherical particles of unchanging size and shrinking spherical particles, limitation of the shrinking core model, rate-determining steps with a combination of resistances and related problems. 10 Hrs

### **UNIT-III**

CATALYSIS: Introduction to catalysis, Properties of catalysts, Estimation methods for catalytic properties, Promoters, Inhibitors etc., Mechanism of catalysis, Rate equations for different rate 06 Hrs controlling steps.

## **UNIT-IV**

**DEACTIVATION**: Deactivating catalyst, Mechanism, rate & performance equation

**SOLID CATALYZED REACTIONS:** Rate equation for surface kinetics, heterogeneous systems, Pore diffusion resistance combined with surface kinetics. Thiele modulus and enhancement factor. 10 Hrs

## **UNIT-V**

**PERFORMANCE EQUATION FOR DIFFERENT REACTION SYSTEMS:** Performance equations for reactors containing porous catalyst particles, Experimental methods for finding rates, Packed bed catalytic reactor & reactors with suspended solid catalyst.

**GAS-LIQUID REACTORS**: Trickle Bed, Slurry reactors. Three phase fluidized bed.

07 Hrs



Autonomous College under VTU

### LABORATORY COMPONENT

- 1. Kinetic studies using batch reactor for an equimolar bimolecular reaction
- 2. Kinetic studies using batch reactor for a non-equimolar bimolecular reaction
- 3. Isothermal plug flow reactor
- 4. Mixed flow reactor
- 5. Semi batch reactor
- 6. RTD studies in packed bed reactor
- 7. RTD studies in a tubular reactor
- 8. RTD studies in a mixed flow reactor
- 9. Effect of temperature on the kinetics of the reaction
- 10. Determination of percentage of iron in the given rust solution by external indicator method

### **TEXTBOOKS:**

- 1. Octave Levenspeil, Chemical Reaction Engineering, 3<sup>rd</sup> Edition, John Wiley & Sons, 2001.
- 2. H. Scott Fogler, Elements of Chemical Reaction Engineering. 3<sup>rd</sup> Edition Prentice Hall, 2001.

### **REFERENCE BOOKS:**

- 1. J.M. Smith, Chemical Engineering Kinetics -3<sup>rd</sup> Edition, McGraw Hill., 1984
- 2. K.A. Gavhane, Chemical Reaction Engineering-I, series Volume-1, Nirali Prakashan., ISBN-13: 9788185790879, 2011.

#### **E BOOKS**

- 1. Fundamentals of Chemical Reaction Engineering by M E Davis: http://authors.library.caltech.edu/25070/1/FundChemReaxEng.pdf
- 2. Chemical Reaction Engineering: Beyond the Fundamentals by *Dora Swamy*: <a href="https://www.crcpress.com/Chemical-Reaction-Engineering-Beyond-the-Fundamentals/Doraiswamy-Uner/9781439831229">https://www.crcpress.com/Chemical-Reaction-Engineering-Beyond-the-Fundamentals/Doraiswamy-Uner/9781439831229</a>
- 3. Fundamentals of Chemical Reaction Engineering, Mark E. E. Davis, Robert J. J. Davis http://www.e-booksdirectory.com/details.php?ebook=2512

#### **MOOC's & ONLINE COURSES:**

- 1. http://ocw.mit.edu/courses/chemistry/5-68j-kinetics-of-chemical-reactions-spring-2003/index.htm
- 2. <a href="https://nptel.ac.in/courses/103/101/103101141/#">https://nptel.ac.in/courses/103/101/103101141/#</a>

### **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, III, V and two questions each from Unit II and IV.



Autonomous College under VTU

# **COURSE OUTCOMES (COs):**

| COURSE OF I COMES (COS). |                                                                          |           |  |  |  |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|--|
|                          | COURSE OUTCOMES                                                          | PROGRAMME |  |  |  |  |  |  |  |  |
|                          |                                                                          | OUTCOMES  |  |  |  |  |  |  |  |  |
| CO1                      | Apply knowledge of material balance to formulate the design equations    | PO3       |  |  |  |  |  |  |  |  |
|                          | for non-ideal systems                                                    |           |  |  |  |  |  |  |  |  |
| CO <sub>2</sub>          | Analyze/interpret the performance of non-ideal systems in comparison     | PO4       |  |  |  |  |  |  |  |  |
|                          | with ideal systems.                                                      |           |  |  |  |  |  |  |  |  |
| CO3                      | Develop rate expression for different reaction mechanisms using suitable | PO3       |  |  |  |  |  |  |  |  |
|                          | models for catalytic, non-catalytic and catalytic deactivation reactions |           |  |  |  |  |  |  |  |  |
|                          | with an understanding of their limitations                               |           |  |  |  |  |  |  |  |  |
| CO4                      | Formulate the design equation for heterogeneous reaction systems and     | PO3       |  |  |  |  |  |  |  |  |
|                          | porous catalytic reactions in combination with diffusion mechanisms.     |           |  |  |  |  |  |  |  |  |
| CO5                      | Analyze the experimental data from different reactor configurations used | PO4       |  |  |  |  |  |  |  |  |
|                          | for heterogeneous catalytic reactions                                    |           |  |  |  |  |  |  |  |  |
| CO6                      | Conduct experiments in teams to collect kinetic data from both ideal and | PO9       |  |  |  |  |  |  |  |  |
|                          | non-ideal reactors.                                                      |           |  |  |  |  |  |  |  |  |

# ASSESSMENT:

| Continu    | ous Internal Assessments                                       | Marks 100% (Weightage 50%) | Assessment |  |  |  |  |  |  |
|------------|----------------------------------------------------------------|----------------------------|------------|--|--|--|--|--|--|
| Theory     | Three Internals (Best of Two)                                  | 40%                        | Course     |  |  |  |  |  |  |
| Component  |                                                                |                            | Instructor |  |  |  |  |  |  |
|            | Quiz (Two Quizzes)                                             | 10%                        | Course     |  |  |  |  |  |  |
|            |                                                                |                            | Instructor |  |  |  |  |  |  |
| Laboratory | Laboratory Component                                           | 50%                        | Course     |  |  |  |  |  |  |
| Component  |                                                                |                            | Instructor |  |  |  |  |  |  |
| S          | Semester End Examination (Written Examination for Three Hours) |                            |            |  |  |  |  |  |  |

| Component   | Test 1 | Test 2 | ~     | Laboratory | Laboratory | Total Marks |
|-------------|--------|--------|-------|------------|------------|-------------|
|             |        |        | 1/AAT | Work       | Test       |             |
| Max. Marks  | 20     | 20     | 10    | 30         | 20         | 100         |
| Reduced CIE | 10     | 10     | 5     | 15         | 10         | 50          |



Autonomous College under VTU

| Course Title       |   | ECONOMICS IN ENGINEERING                 |  |  |  |  |  |  |     |  |     |                           |  |  |
|--------------------|---|------------------------------------------|--|--|--|--|--|--|-----|--|-----|---------------------------|--|--|
| <b>Course Code</b> | 1 | 9 C H 6 H S E I E Credits 03 L-T-P 3-0-0 |  |  |  |  |  |  |     |  |     |                           |  |  |
| CIE                |   | 100 marks (50% weightage)                |  |  |  |  |  |  | ge) |  | SEE | 100 marks (50% weightage) |  |  |

PREREQUISITES: Basic Accounting and Mathematical calculation skills.

**SYLLABUS:** 

#### UNIT - I

**INTRODUCTION:** Engineering Economics – An overview, Relationship between Engineering and Economics, Scope of Engineering Economics, Engineering Design and Process Economics.

**PROCESS DESIGN DEVELOPMENT:** Economics in the Overall Plant, Plant location and layout – Factors affecting plant design and layout, Economics of Plant Location and Layout, Conduction of feasibility survey and studies. **06 Hrs** 

### **UNIT - II**

COST ANALYSIS: Factors involved in project cost estimation, methods employed for estimation of the capital investment, Estimation of fixed and working capital, Calculation using Cost Indices, estimating equipment cost by scaling, Component of total product cost and Estimation of Total Sale Value and Numerical.

06 Hrs

#### **UNIT - III**

**INTEREST:** Simple and compound interest, Nominal and effective interest, Continuous Interest, interest formulae and their application, Time value of money and Numerical.

10 Hrs

## **UNIT-IV**

**DEPRECIATION:** Depreciation – Introduction, Meaning, causes of depreciation, Methods of Depreciation - Straight Line method, Unit of Production Method, Double Declining Balance Method, Sum of Years Digits Method /Sinking Fund Method and Numerical.

**TAXES:** Relationship between Depreciation and Taxes, Types of Taxes, Equivalence after Taxes, Cost comparison after taxes and Numerical.

10 Hrs

### UNIT - V

**FINANCIAL STATEMENTS:** Importance of Financial Statements, Compilation of Financial Statements including Balance Sheet, Income statement and Profit and loss statement.

**BREAKEVEN ANALYSIS:** Meaning, Determination of Break Even Point, BEP in terms of quantity, BEP in terms of Sales Value, BEP as a percentage of Capacity, Break Even Chart, Limitations of Break-Even Analysis and Numericals. **07 Hrs** 

### **TEXT BOOKS:**

- 1. Plant Design and Economics for Chemical Engineers, M.S. Peters and K.D.Timmerhaus, 4th Edition, McGraw Hill, 1991.
- 2. Engineering Economy, Thuesen, Fabrycky and Thuesen, 9th Edition, Prentice-Hall, 2000.

### **REFERENCE BOOKS:**

- 1. Engineering Economics and Costing, Sasmita Mishra, PHI Learning Pvt. Ltd., 2<sup>nd</sup> Edition, 2011.
- 2. Principles of Engineering Economy; by Grant and Ireson, Ronald Press, 2019.

### E BOOKS

1. Engineering Economics, R Paneerselvam, ISBN: 978-81203-48370



**Autonomous College under VTU** 

## **MOOC's & ONLINE COURSES:**

- 1. https://www.coursera.org/lecture/faecalsludge/4-7-engineering-economics-KoVa9
- 2. <a href="https://online.stanford.edu/courses/cee146s-engineering-economics-and-sustainability">https://online.stanford.edu/courses/cee146s-engineering-economics-and-sustainability</a>

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units.
- 2. Five questions to be answered.
- 3. One question each from Unit I, II, V and two questions each from Unit IIII and IV.

# **COURSE OUTCOMES (COs):**

|                 | COURSE OUTCOMES                                                                | Programme |
|-----------------|--------------------------------------------------------------------------------|-----------|
|                 |                                                                                | Outcomes  |
| CO <sub>1</sub> | Acquainted with the application of the principles of Economics to Chemical     | PO1       |
|                 | Engineering                                                                    |           |
| CO <sub>2</sub> | Understand the basics of fixed and working capital in an industrial set up and | PO10      |
|                 | the cost accounting principles of product costing.                             |           |
| CO <sub>3</sub> | Distinguish between various types of interests and their application in        | PO2       |
|                 | Engineering Economics.                                                         |           |
| CO4             | Identify the appropriate method of depreciation under various circumstances.   | PO2       |
|                 | Comprehend the interrelationship between depreciation and taxes.               |           |
| CO5             | Comprehend the different Financial Statements as applied to any Chemical       | PO4       |
|                 | company and learn the principles of Break Even Analysis.                       |           |
| CO6             | Infer on a macroscopic level the minute economics of Process Engineering       | PO11      |
|                 | Design and Plant Technology.                                                   |           |

## **ASSESSMENT:**

| Continuo                                                       | ous Internal Assessments      | Marks 100% (Weightage 50%) | Assessment        |  |  |  |  |
|----------------------------------------------------------------|-------------------------------|----------------------------|-------------------|--|--|--|--|
| Theory<br>Component                                            | Three Internals (Best of Two) | 40%                        | Course Instructor |  |  |  |  |
|                                                                | Quiz (Two Quizzes)            | 10%                        | Course Instructor |  |  |  |  |
| Semester End Examination (Written Examination for Three Hours) |                               |                            |                   |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | NUMERICAL TECHNIQUES IN CHEMICAL ENGINEERING            |  |  |  |  |  |  |  |            |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|------------|
| <b>Course Code</b>  | 1 | 9 C H 6 D E L D 1 Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |            |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  | veightage) |

**PREREQUISITES:** Heat Transfer, Chemical Reaction Engineering-1, Chemical Reaction Engineering 2, and Engineering Mathematics

**SYLLABUS:** 

### UNIT - I

MATHEMATICAL FORMULATION OF THE PHYSICAL PROBLEMS: Applications of the law of conservation of mass in mixing tank system, equilibrium batch still and single stage extraction. Applications of the law of conservation of energy: Gas compression system, and Flow of heat from a fin and related numerical problems for all the above physical systems.

07Hrs

### **UNIT-II**

**MATHEMATICAL FORMULATION OF COMPLEX PROBLEMS**: Mass transfer with the reaction for gas-liquid contact, heat transfer through multiwall cylinders and spheres, heat transfer in a jacketed vessel, rate expression for series and parallel homogenous reactions and related numerical problems. **06Hrs** 

#### UNIT - III

**APPLICATION OF NON LINEAR ALGEBRAIC EQUATION:** Pressure drop in pipe, Minimum fluidization velocity – Use of Newton – Raphson method.

**APPLICATION OF INITIAL VALUE PROBLEMS:** Stirred tank with coil heater, Series of stirred tanks with coil heaters, Batch reactors, Plug flow reactors and unsteady state stirred tank reactors – Use of RK method.

**APPLICATION OF FINAL VALUE PROBLEMS:** One dimensional steady state heat conduction, Chemical reaction and diffusion in a pore – Use of discretization technique. **10Hrs** 

### **UNIT-IV**

**FORMULATIONS OF PARTIAL DIFFERENTIAL EQUATIONS**: Formulations of partial Differential equations for the continuity equation, Fick's second law of diffusion and heat conduction in rectangular coordinates.

**SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS**: Solution for heat conduction equation, solution for Laplace's equation using finite difference method.

FINITE DIFFERENCES METHOD FOR STAGE PROCESSES: Analysis of stage-wise Processes like multistage counter-current extraction, stirred-tank reactor system.

### UNIT -V

**APPLICATIONS OF LAPLACE TRANSFORMS**: Applications to chemical engineering like level/temperature in a single tank system, mixing tank, CSTR with first order reaction, interacting system and non-interacting system. **06Hrs** 

## **TEXTBOOKS:**

- 1. Mickley H.S., Sherwood T.K. and Reed C.E., Applied Mathematics in Chemical Engineering 3rd Edition, Tata McGraw Hill, 1999.
- 2. Jenson V.G. & Jeggreys G.V., Mathematical Methods in Chemical Engineering, 1977.

### **REFERENCE BOOKS:**



Autonomous College under VTU

- 1. Rose L.M. Applications of Mathematical Modeling to Process Development and Design, Publishers Ltd., London, 1998.
- 2. William. L Luyben, Process Modeling Simulation and Control for Chemical Engineering, 2<sup>nd</sup> Edition, McGraw Hill, 1990.

### **E BOOKS**

- 1. <a href="http://www.amazon.in/Applied-Mathematics-Modeling-Chemical-Engineers-ebook/dp/B009I06RKU">http://www.amazon.in/Applied-Mathematics-Modeling-Chemical-Engineers-ebook/dp/B009I06RKU</a>
- 2. <a href="http://www.worldcat.org/title/applied-mathematics-in-chemical-engineering/oclc/557742198">http://www.worldcat.org/title/applied-mathematics-in-chemical-engineering/oclc/557742198</a>

### **MOOC's & ONLINE COURSES:**

- 1. https://www.mooc-list.com/categories/mathematics?static=true
- 2. http://www.moocs.co/Higher\_Education\_MOOCs.html

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, II, V and two questions each from Unit III and IV.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                                                                  | Programme<br>Outcomes |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| CO1 | Apply the principles of conversation laws to formulate chemical engineering problems.                                                                            | PO2                   |
| CO2 | Develop and solve ordinary differential equations for chemical engineering problems for reaching substantiated conclusions                                       | PO3                   |
| CO3 | Develop and solve partial differential equations to solve chemical engineering problems                                                                          | PO3                   |
| CO4 | Apply the finite difference method to predict and model various unit operations and processes by understanding the limitations.                                  | PO4                   |
| CO5 | Use knowledge of numerical techniques to solve the developed differential and algebraic equations to analyze and interpret the behaviour of different processes. | PO2                   |
| CO6 | Use knowledge of Laplace transforms to solve complex engineering problems.                                                                                       | PO4                   |

#### **ASSESSMENT:**

| Continu   | ous Internal Assessments      | Marks 100 (Weightage 50%)        | Assessment        |
|-----------|-------------------------------|----------------------------------|-------------------|
| Theory    | Three Internals( Best of Two) | 80%                              | Course instructor |
| Component | Quiz (Two Quizzes or AAT)     | 20%                              | Course instructor |
|           | Semester End Examination (    | Written Examination for Three Ho | ours)             |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | INTERFACIAL PHENOMENA                      |  |  |  |  |  |  |     |  |                |            |
|---------------------|---|--------------------------------------------|--|--|--|--|--|--|-----|--|----------------|------------|
| <b>Course Code</b>  | 1 | 1 9 C H 6 D E L D 2 Credits 03 L-T-P 3-0-0 |  |  |  |  |  |  |     |  |                |            |
| CIE                 |   | 100 marks (50% weightage) SEE              |  |  |  |  |  |  | SEE |  | 100 marks (50% | weightage) |

PREREQUISITES: Chemical Reaction Engineering-1 and Engineering Mathematics

**SYLLABUS:** 

### UNIT - I

**INTRODUCTION:** Concept of Colloids and Interface, Surface Tension, Equivalence in the concepts of surface energy and surface tension, Measurement of Interfacial Tension.

10Hrs

#### UNIT - II

**EXCESS PRESSURE:** Generalized equation for excess pressure across a curved surface-the equation of Young and Laplace and its application, Kelvin's equation and its implications: Capillary condensation, Super Saturation, Nucleation. **07Hrs** 

### **UNIT-III**

**WETTING, FLOATING AND DETERGENCY**: Work of adhesion, cohesion, criteria for spreading of liquids, kinetics of spreading, Young's equation

**EMULSIONS**: General Properties, Factors determining emulsion stability, Aging and inversions of emulsions, Hydrophobic-Lipophilic Balance 10Hrs

### **UNIT-IV**

**CHARGED INTERFACES AND ADSORPTION AT INTERFACES:** The concept of electrical double layer, Electro kinetic Phenomena: Electrophoresis, Electro-Osmosis, and its Industrial applications.

06Hrs

#### **UNIT-V**

**SURFACTANTS:** Introduction, classification & its Properties of surfactants, and Surfactant self-assembly, and Thermodynamic aspects.

**SURFACTANT BASED SEPARATIONS:** Liquid membrane permeation, Foam separations, Micellar separations, Soil remediation. **06 Hrs** 

## **TEXTBOOKS:**

- 1. Pallab Ghosh, Colloids and Interface Science, 1st Edition, Prentice Hall Publications, 2009.
- 2. Clarence A. Miller, and P. Neogi, "Interfacial Phenomena: Equilibrium and Dynamic Effects", 2<sup>nd</sup> Edition, 2019.

#### **REFERENCE BOOKS:**

- 1. A.W. Adamson, Physical chemistry of surfaces, 6<sup>th</sup> Edition, John Wiley, 1997.
- 2. Duncan J. Shaw, Butter worth Heinemann, Introduction to colloid and surface chemistry,4<sup>th</sup> Edition.

## **EBOOKS**

 ${\bf 1.} \quad \underline{http://www.freebookcentre.net/chemistry-books-download/An-Introduction-to-Surface-Chemistry.html}$ 



**Autonomous College under VTU** 

2. https://archive.org/details/introductiontosu017148mbp

## **MOOC's & ONLINE COURSES:**

1. http://www.rsc.org/eic/2015/03/mooc-massive-open-online-course

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit II, IV, V and two questions each from Unit I and III

# **COURSE OUTCOMES (COs):**

|                 | COURSE OUTCOMES PROGRAMME                                                      |      |  |  |  |  |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------|------|--|--|--|--|--|--|--|--|
|                 | COURSE OUTCOMES                                                                |      |  |  |  |  |  |  |  |  |
| CO1             | Understand the concepts of surface and interfacial phenomena                   | PO2  |  |  |  |  |  |  |  |  |
| CO <sub>2</sub> | Collate the practical implications of the surface concepts                     | PO 3 |  |  |  |  |  |  |  |  |
| CO <sub>3</sub> | Accustomed with real-world applications of colloids and its stability for      | PO 6 |  |  |  |  |  |  |  |  |
|                 | Societal needs                                                                 |      |  |  |  |  |  |  |  |  |
| CO4             | Apprehend the principles and Options available for the measurement of          | PO2  |  |  |  |  |  |  |  |  |
|                 | surface Properties                                                             |      |  |  |  |  |  |  |  |  |
| CO5             | Get entranced with the updated research in the topic to bridge the gap between | PO12 |  |  |  |  |  |  |  |  |
|                 | societal needs and development in the area of Interfacial Science and          |      |  |  |  |  |  |  |  |  |
|                 | Technology.                                                                    |      |  |  |  |  |  |  |  |  |
| CO6             | Recognize the factors affecting Industrial separation processes based on       | PO 6 |  |  |  |  |  |  |  |  |
|                 | interfacial/surface phenomena for sustainability                               |      |  |  |  |  |  |  |  |  |

## **ASSESSMENT:**

| Continu   | uous Internal Assessments                                      | Marks 100 (Weightage 50%) | Assessment        |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------|---------------------------|-------------------|--|--|--|--|--|--|
| Theory    | Three Internals( Best of Two)                                  | 80%                       | Course instructor |  |  |  |  |  |  |
| Component | Quiz (Two Quizzes or AAT)                                      | 20%                       | Course instructor |  |  |  |  |  |  |
|           | Semester End Examination (Written Examination for Three Hours) |                           |                   |  |  |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | COMPOSITE MATERIALS                      |  |  |  |  |  |  |     |  |     |  |                |            |
|---------------------|---|------------------------------------------|--|--|--|--|--|--|-----|--|-----|--|----------------|------------|
| <b>Course Code</b>  | 1 | 9 C H 6 O E C O M Credits 03 L-T-P 3-0-0 |  |  |  |  |  |  |     |  |     |  |                |            |
| CIE                 |   | 100 marks (50% weightage)                |  |  |  |  |  |  | ge) |  | SEE |  | 100 marks (50% | weightage) |

**PREREQUISITES:** Material Science and biomaterials, Nanomaterial & Technology & polymer technology

**SYLLABUS:** 

#### UNIT -I

**INTRODUCTION:** Introduction to ceramics & advanced ceramics materials, superior structural, optical and electrical properties of ceramic composites, classification & application of advanced ceramics based on their functions.

**CERAMIC FABRICATION METHODS:** Gas phase reactions methods: direct metal oxidation & reaction bounding. Liquid precursor methods: Polymer pyrolysis. Fabrication from powders: melt casting and firing of compacted powders. All three methods for the preparation of ultra-fine powders of metal-oxides, metal-nitrides and metal-carbides. **07Hrs** 

#### UNIT- II

**SINTERING OF CERAMICS:** Fundamental concepts in sintering, driving forces for sintering and Fick's Law of Diffusion in crystalline solids.

**FORMING OF CERAMICS COMPOSITE MATERIALS:** Hot pressing, iso-static pressing, slip casting, tape-casting and pressure casting, sol-gel processes for the formation of monolithic ceramics.

**PROCESSING TECHNIQUES BASED ON REACTION METHODS:** Chemical vapour deposition (CVD), plasma-enhanced chemical vapour deposition (PECVD), processing methods for synthesis of fibers (Boron, Aramaid, Carbon and glass fibers) and whiskers.

10Hrs

## **UNIT-III**

**SYNTHESIS OF MIXED CERAMIC OXIDES:** Mechanical methods: Consolidation, mechanochemical synthesis, Evaporation of liquid methods: Spray drying and Spray pyrolysis.

NON-CONVECTIONAL COMPOSITES: Polymer Clay Nanocomposites, Self-Healing Composites, Biocomposites, Laminates, Ceramic Laminates and Hybrid Composites. 06Hrs

### **UNIT-IV**

**REINFORCEMENT:** Mechanism of reinforcement, master bath & compounding equipment used for reinforcement. **REINFORCED METAL MATRIX:** Methods for preparation of powdered metal matrix, fiber reinforced metal matrix. Types and Properties of matrix materials and its industrial application

**CERAMIC REINFORCED MATRIX:** Cold pressing & sintering method, liquid silicon infiltration technique for synthesis of ceramic reinforced matrix, Types and properties of ceramic Matrix and its industrial applications.

10Hrs

#### **UNIT V**

**POLYMER COMPOSITES:** Stress-Strain modulus relationship for fibre reinforced polymer composites, manufacturing methods: Hand layouts, filament winding, pultrusion, SMC and DMC. Applications of polymer reinforced composites in marie, aerospace, automobile, building & computer industry. **06Hrs** 

### **TEXTBOOKS:**



Autonomous College under VTU

- 1. M.N. Rahaman, "Ceramic processing and sintering", 2<sup>nd</sup> Edition, Marcel Dekker, Inc, New York.
- 2. David Segal, "Chemical synthesis of advanced ceramic materials", Cambridge university press, Cambridge, New York.

## **REFERENCE BOOKS:**

1. Krishan K. Chawla, "Composite Materials Science and Engineering", 2<sup>nd</sup> Edition, Springer New York Heidelberg Dordrecht London.

### **EBOOKS**

- 1. Composite Materials by Dr. H. K. Shivanand and B. V. Babu Kiran, ISBN: 9788184121452
- 2. Composite Materials by S. C. Sharma, ISBN: 9788173192579

#### **MOOC's &ONLINE COURSES:**

- 1. http://nptel.ac.in/courses/101104010/
- 2. https://www.coursebuffet.com/sub/material-science/320/composite-materials

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, III, V and two questions each from Unit II and IV.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                                 |      |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|--|
| CO1 | Classify composite materials based on the Industrials applications                                                              | PO2  |  |  |  |  |  |  |  |
| CO2 | Apprehend and select a suitable fabrication technique for the processing of ceramic materials.                                  | PO6  |  |  |  |  |  |  |  |
| CO3 | Distinguish between mechanical and chemical techniques for the fabrication of composite materials                               | PO3  |  |  |  |  |  |  |  |
| CO4 | Identify suitable instruments to measure the properties of the ceramics and other composites                                    | PO2  |  |  |  |  |  |  |  |
| CO5 | Custom the synthesized metal- matrix and ceramic-matrix composite materials to use in different engineering disciplines.        | PO12 |  |  |  |  |  |  |  |
| CO6 | Comprehend the fabrication techniques for reinforced polymer materials to demonstrate the knowledge of sustainable development. | PO7  |  |  |  |  |  |  |  |

### **ASSESSMENT:**

| Continu    | ous Internal Assessments           | Marks 100% (Weightage50%)              | Assessment        |
|------------|------------------------------------|----------------------------------------|-------------------|
| Theory     | Three Internals (Best of Two)      | 40%                                    | Course Instructor |
| Component  | Quiz (Two Quizzes)                 | 10%                                    | Course Instructor |
| Laboratory | Laboratory Component               | 50%                                    | Course Instructor |
| Component  |                                    |                                        |                   |
|            | <b>Semester End Examination (V</b> | <b>Written Examination for Three H</b> | ours)             |



Autonomous College under VTU

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | <b>Total Marks</b> |
|-------------|--------|--------|------------|-------------|--------------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100                |
| Reduced CIE | 20     | 20     | 5          | 5           | 50                 |



Autonomous College under VTU

| <b>Course Title</b> |   | CHEMICAL PLANT DESIGN PROJECT |                                          |  |  |  |  |             |              |  |
|---------------------|---|-------------------------------|------------------------------------------|--|--|--|--|-------------|--------------|--|
| <b>Course Code</b>  | 1 | 9                             | 9 C H 6 D C P W 2 Credits 03 L-T-P 0-0-3 |  |  |  |  |             |              |  |
| CIE                 |   |                               |                                          |  |  |  |  | 0 marks (50 | % weightage) |  |

**PREREQUISITE:** Core subjects from the preceding semesters.

**SYLLABUS:** 

This course is teamwork where a student is expected to work in a group with a maximum of four students. The group is expected to select a chemical engineering process project, which is oriented in solving an industrial problem or beneficial for society. The project group should complete the preliminary literature survey, identify suitable products, equipment/utility complete with all the accessories required & execution plan for the project in the first phase. A synopsis needs to be submitted at the end of the first phase. In the second phase, students are expected to submit detailed material & energy balances for all unit operations, safety aspects, a summary of economic aspects, and finally submit the feasible project report for the process. The project work should be completed at the end of the sixth semester, which is evaluated by a committee constituted by the HoD for internal assessment.

## **COURSE OUTCOMES (COs):**

|                 | COURSE OUTCOMES                                                                            | PROGRAMME<br>OUTCOMES |
|-----------------|--------------------------------------------------------------------------------------------|-----------------------|
| CO1             | Select or identify the industrial/societal engineering challenge and find a viable option  | PO2                   |
| CO2             | Develop/Design a process flow diagram and estimate the requirement of materials and energy | PO3                   |
| CO3             | Optimization of the process/plant system using available software                          | PO5                   |
| CO4             | Analyze the impact of process inventories on environment and society                       | PO7                   |
| CO5             | Showcase the ethics in design and development of the process                               | PO8                   |
| CO <sub>6</sub> | Possess enhanced psychomotor, cognitive and affective skills                               | PO9                   |

## **ASSESSMENT:**

|           | ous Internal<br>essments                                             | Marks 100% (Weightage 50%) | Assessment                   |  |  |  |  |  |
|-----------|----------------------------------------------------------------------|----------------------------|------------------------------|--|--|--|--|--|
| Practical | Presentation 1                                                       | 40%                        | Committee constituted by HOD |  |  |  |  |  |
| Component | Presentation 2                                                       | 40%                        | Committee constituted by HOD |  |  |  |  |  |
|           | Report                                                               | 20%                        | Course Instructor/ Guide     |  |  |  |  |  |
| Se        | Semester End Examination – Presentation and write up (Weightage 50%) |                            |                              |  |  |  |  |  |

| Component   | <b>Presentation 1</b> | <b>Presentation 2</b> | Report | <b>Total Marks</b> |
|-------------|-----------------------|-----------------------|--------|--------------------|
| Max. Marks  | 40                    | 40                    | 20     | 100                |
| Reduced CIE | 20                    | 20                    | 10     | 50                 |



Autonomous College under VTU

| Course Title       |   |                                          | 5    | SEM  | INA | AR- | 1: B  | ASI  | ED ( | ON | CERTIFIE | D MC | SEMINAR-1: BASED ON CERTIFIED MOOC COURSE ON |            |  |  |  |  |  |  |  |
|--------------------|---|------------------------------------------|------|------|-----|-----|-------|------|------|----|----------|------|----------------------------------------------|------------|--|--|--|--|--|--|--|
|                    |   | NPTEL/SWAYAM                             |      |      |     |     |       |      |      |    |          |      |                                              |            |  |  |  |  |  |  |  |
| <b>Course Code</b> | 1 | 9 C H 6 D C S R 1 Credits 02 L-T-P 0-0-2 |      |      |     |     |       |      |      |    |          |      |                                              |            |  |  |  |  |  |  |  |
| CIE                |   | 100                                      | ) ma | ırks | (50 | % w | veigl | htag | ge)  |    | SEE      | 10   | 0 marks (50% v                               | weightage) |  |  |  |  |  |  |  |

The students are expected to obtain a certificate in 3<sup>rd</sup>/4<sup>th</sup>/5<sup>th</sup> Semester in any one of the MOOCS (NPTEL/SWAYAM) courses enlisted in the syllabus or courses related to Chemical Engineering and allied areas. If the student selects any course other than that enlisted, should get prior approval from the Department. The student should submit a report and present the same during the sixth semester. The course will be evaluated by a committee constituted by the HoD for internal assessment.

## LIST OF THE MOOC COURSES

| S<br>No | Course Title                                            | Offered Institute and Portal          |
|---------|---------------------------------------------------------|---------------------------------------|
| 1.      | Chemical Process Intensification                        | Prof. Subrata Kumar, IIT Guwahati     |
| 2.      | Chemical Process Safety                                 | Prof. Shishir Sinha, IIT Roorkee      |
| 3.      | Colloids and Surfaces                                   | Prof. Basavaraju, IIT Madras          |
| 4.      | Infrared spectroscopy for pollution monitoring          | Prof. J. R. Mudakavi , IISc Bangalore |
| 5.      | Introduction to Polymer Physics                         | Prof. Amit Kumar, IIT Guwahati        |
| 6.      | Natural Gas Engineering                                 | Prof. Pankaj Tiwari, IIT Guwahati     |
| 7.      | Phase equilibrium thermodynamics                        | Prof. Gargi Das, IIT Kharagpur        |
| 8.      | Polymers: concepts, properties, uses and sustainability | Prof. Abhijit P Deshpande, IIT Madras |
| 9.      | Technologies for Clean and Renewable Energy             | By Prof. P. Mondal, IIT Roorkee       |
|         | Production                                              |                                       |
| 10.     | Unit operations of particulate matter                   | Prof. Shabina Khanam, IIT Roorkee     |
| 11.     | Electrochemical Technology in Pollution Control         | Prof. J. R. Mudakavi , IISc Bangalore |
| 12.     | Environmental Quality Monitoring & Analysis             | Dr. R. Ravi Krishna, IIT Madras       |
| 13.     | Flow through porous media                               | Dr. Somnath Ganguly IIT Kharagpur     |
| 14.     | Rheology of Complex Materials                           | Dr. Abhijit P. Deshpande, IIT Madras  |
| 15.     | Soft Nano Technology                                    | Dr. R. Mukherjee, IIT Kharagpur       |
| 16.     | MATLAB Programming for Numerical Computation            | Dr. Niket S.Kaisare, IIT Madras       |
| 17.     | Catalyst Science and Technology                         | Dr. Mahuya De, IIT Guwahati           |
| 18.     | Computational Fluid Dynamics                            | Prof. Sreenivas Jayanti IIT Madras    |
| 19.     | Entrepreneurship and IP strategy                        | Prof. Gouri Gargate   IIT Kharagpur   |
| 20.     | Ethics in Engineering Practice                          | Prof. Susmita Mukhopadhyay, IIT       |
|         |                                                         | Kharagpur                             |
| 21.     | Industrial Safety Engineering                           | Prof. Jhareswar Maiti, IIT Kharagpur  |
| 22.     | Innovation and Start-up Policy                          | Prof. Rahul K. Mishra, IILM Institute |



Autonomous College under VTU

# **COURSE OUTCOMES (COs):**

|                 | COURSE OUTCOMES                                                      | PROGRAMME<br>OUTCOMES |
|-----------------|----------------------------------------------------------------------|-----------------------|
| CO1             | Enhance the knowledge in chemical engineering and allied domains.    | PO1                   |
| 002             |                                                                      | DO5                   |
| CO2             | Extent the knowledge to utilize modern tools to upgrade the soft     | PO5                   |
|                 | skills.                                                              |                       |
| CO <sub>3</sub> | Utilize the gained knowledge for interdisciplinary applications      | PO6                   |
| CO4             | Report the apercu of the MOOCS course.                               | PO10                  |
| CO5             | Communicate effectively with peers regarding the significance of     | PO10                  |
|                 | the course selected.                                                 |                       |
| CO <sub>6</sub> | Select a topic of interest and demonstrate its significance in life- | PO12                  |
|                 | long learning.                                                       |                       |

## **ASSESSMENT:**

|           | nuous Internal<br>ssessments                                         | Marks 100%<br>(Weightage 50%) | Assessment                   |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------|-------------------------------|------------------------------|--|--|--|--|--|--|
| Practical | Presentation 1                                                       | 40%                           | Committee constituted by HOD |  |  |  |  |  |  |
| Component | Presentation 2                                                       | 40%                           | Committee constituted by HOD |  |  |  |  |  |  |
|           | Report                                                               | 20%                           | Course Instructor/ Guide     |  |  |  |  |  |  |
| Sem       | Semester End Examination – Presentation and write up (Weightage 50%) |                               |                              |  |  |  |  |  |  |

| Component   | Presentation 1 | <b>Presentation 2</b> | Report | Total Marks |
|-------------|----------------|-----------------------|--------|-------------|
| Max. Marks  | 40             | 40                    | 20     | 100         |
| Reduced CIE | 20             | 20                    | 10     | 50          |



Autonomous College under VTU

### SEVENTH SEMESTER

| <b>Course Title</b> |   | BIOLOGY FOR ENGINEERS                                   |                                          |  |  |  |  |  |            |  |  |
|---------------------|---|---------------------------------------------------------|------------------------------------------|--|--|--|--|--|------------|--|--|
| <b>Course Code</b>  | 1 | 9                                                       | 9 C H 7 B S B F E Credits 02 L-T-P 2-0-0 |  |  |  |  |  |            |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |                                          |  |  |  |  |  | weightage) |  |  |

#### **SYLLABUS:**

#### **UNIT-I**

**INTRODUCTION TO LIFE:** Characteristics of living organisms, structure of prokaryotic and eukaryotic cell; Introduction to biomolecules: definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids, vitamins, and enzymes; concept of genes and chromosome.

06 Hrs

#### **UNIT-II**

**CONCEPTS OF ENZYMOLOGY:** Basic concepts in enzyme structure and function, cofactors, enzyme kinetics, modes of inhibition. **04 Hrs** 

#### **UNIT-III**

**IMMUNOLOGICAL SCIENCE:** Immune system and its types; Functional properties of antibodies; Helper T cells and T cell activation, Importance of Microbiology. **05 Hrs** 

#### **UNIT-IV**

**IMPLEMENTATION OF BIO-NANO SCIENCE:** Nano Biomolecules and its various types; Principles and Application of Biosensor; Basics of Biochips, Bioinformatics, and its applications

06 Hrs

## **UNIT-V**

**ADVANCES IN BIOLOGICAL SCIENCE:** Fundamentals of Biomechanics, Neural Network, Stem Cell, Introduction to Genetics, Genetic Engineering, and its Application **05 Hrs** 

#### **TEXTBOOKS:**

- 1. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 2. Dr. Sohini Singh and Dr. Tanu Allen, "Biology for Engineers", Vayu Education of India, New Delhi, 2014.
- 3. Lehninger Principles of Biochemistry by David L. Nelson and Michael M. Cox, 7<sup>th</sup> Edition, W. H. Freeman and Company, New York.

## **REFERENCE BOOKS:**

- 1. Molecular Biology of the cell. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter, Garland Science; 5<sup>th</sup> edition.
- 2. Simon O. Haykin, Neural Networks and Learning Machines (3rd Edition), Prentice Hall; 3 edition (November 28, 2008).



Autonomous College under VTU

## E-BOOKS

- 1. www.bio12.com/ch3/RaycroftNotes.pdf
- 2. www.engineering.uiowa.edu/bme050/cvb-solids.pdf
- 3. www.biologyjunction.com/mendelian\_genetics.html

## **MOOC's & ONLINE COURSES:**

- 1) Biology for engineers and other non-biologists: https://onlinecourses.nptel.ac.in/noc19\_ge31/preview
- 2) Biology & Life Sciences: https://www.edx.org/course/subject/biology-life-sciences

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit II, III, V and two questions each from Unit II and IV.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                                           | Programme |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     |                                                                                                                                           | Outcomes  |
| CO1 | Understand the biological living organisms concepts from an engineering perspective.                                                      |           |
| CO2 | Integrate biological principles for developing next generation technologies for development of artificial systems mimicking human action. |           |
| CO3 | To understand the cellular make up and structure and functions of biomolecules                                                            |           |
| CO4 | To understand basic concepts in enzyme function, kinetics and modes of inhibition                                                         |           |
| CO5 | To comprehend importance of microbiology and immunological science                                                                        |           |
| CO6 |                                                                                                                                           |           |
|     | areas                                                                                                                                     |           |

### **ASSESSMENT:**

| Continuo          | ous Internal Assessments          | Marks 100       | Assessment |
|-------------------|-----------------------------------|-----------------|------------|
|                   |                                   | (Weightage 50%) |            |
| Theory Component  | Three Internals (Best of Two)     | 80%             | Course     |
|                   |                                   |                 | instructor |
|                   | Quiz (Two Quizzes or AAT)         | 20%             | Course     |
|                   |                                   |                 | instructor |
| Semester End Exar | nination (Written Examination for | Marks 1         | 00         |
|                   | Three Hours)                      | (Weightage      | 50%)       |



Autonomous College under VTU

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | BIOCHEMICAL ENGINEERING   |   |   |   |   |   |     |   |              |         |                |            |           |
|---------------------|---|---------------------------|---|---|---|---|---|-----|---|--------------|---------|----------------|------------|-----------|
| <b>Course Code</b>  | 1 | 9                         | C | Н | 7 | D | C | В   | C | $\mathbf{E}$ | Credits | 03             | L – T – P  | 3 - 0 - 0 |
| CIE                 |   | 100 marks (50% weightage) |   |   |   |   |   | ge) |   | SEE          |         | 100 marks (50% | weightage) |           |

**PREREQUISITES:** Mechanical Operations and Reaction Engineering

**SYLLABUS:** 

#### **UNIT-I**

**INTRODUCTION:** Bioprocess engineering and technology. Role of Chemical engineer in bioprocess industry, Classification of micro-organisms based on structure, reproduction cycle and engineering applications, Nucleic Acids-Structure, Biological function, and Importance for life.

06Hrs

#### **UNIT-II**

**PROTEINS AND ENZYMES:** Enzyme commission's nomenclature of enzymes, Structure and functions of proteins, Methods of enzyme production and purification, Effect of temperature, and pH on the rates of enzyme catalyzed reactions.

**KINETIC MODELS AND EQUATIONS OF ENZYME ACTION:** Michaelis-Menten rate Equation-Steady state and equilibrium state, Experimental determination of rate parameters: Lineweaver-Burk, Eadie-Hofstee and Hanes-Woolf Plots.

10Hrs

#### **UNIT-III**

**ENZYME INHIBITION:** Kinetics of inhibition reactions- Competitive, non-competitive, uncompetitive, substrate and product inhibitions, Determination of kinetic parameters for various types of inhibitions. Evaluation of inhibition Constant-Dixon method, Enzyme Immobilization-Methods of enzyme immobilization and various applications.

10Hrs

#### **UNIT-IV**

**GROWTH KINETICS OF MICROORGANISMS:** Transient growth kinetics, Quantification of growth kinetics, Substrate limited growth, Models with growth inhibitors, Logistic equation, Continuous culture: Optimum Dilution rate in ideal chemostat. **07Hrs** 

#### **UNIT-V**

**FERMENTATION TECHNOLOGY:** Operation and maintenance of typical aseptic aerobic fermentation processes, Sterilization of bioprocess equipment, Sources of nutrients to formulate the medium, alternate bioreactor configurations

**DOWNSTREAM PROCESSING:** Cell disruption, Affinity chromatography, Freeze drying.

06Hrs

### **TEXTBOOKS:**

- 1. Bailey and Ollis, Biochemical Engineering Fundamentals, 2<sup>nd</sup> edition, McGraw Hill, 1976.
- 2. Shuler M. L. and Kargi. F, Bioprocess Engineering, 2<sup>nd</sup> edition, Prentice Hall, 2002.

### **REFERENCE BOOKS:**

- 1. Biochemical Engineering by James Lee, Prentice Hall, University of Michigan, 1992.
- 2. Microbiology Concept and Application by Pelczer, 5<sup>th</sup> edition, McGraw Hill, 2001.



Autonomous College under VTU

## **E BOOKS**

- 1. Biochemical Engineering and Biotechnology by Ghasem Najafpour Ghasem Najafpour, eBook ISBN: 9780080468020.
- 2. Biochemical Engineering by Shigeo Katoh, ISBN: 978-3-527-33804-7.

## **MOOC's & ONLINE COURSES:**

- 1) https://ocw.mit.edu/courses/biological-engineering
- 2) http://www.online.colostate.edu/degrees/biomedical-engineering

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units
- 2. Five questions to be answered.
- 3. One question each from Unit I, IV, V and two questions each from Unit II and III.

## **COURSE OUTCOMES (COs):**

|                 | COURSE OUTCOMES                                                  | Programme |
|-----------------|------------------------------------------------------------------|-----------|
|                 |                                                                  | Outcomes  |
| CO1             | Apply biology in bioprocess engineering                          | PO2       |
| CO2             | Understand functioning of molecules of life                      | PO2       |
| CO3             | Infer features of bioreactors to decide various processes        | PO4       |
| CO4             | Identify enzymes for catalysed processes                         | PO2       |
| CO5             | Explain the kinetics of enzyme catalysed reaction                | PO4       |
| CO <sub>6</sub> | Perform the basis analytical techniques in downstream processing | PO7       |

### **ASSESSMENT:**

| Continuous         | s Internal Assessments          | Marks 100<br>(Weightage 50%) | Assessment        |
|--------------------|---------------------------------|------------------------------|-------------------|
| Theory Component   | Three Internals (Best of Two)   | 80%                          | Course instructor |
|                    | Quiz (Two Quizzes or AAT)       | 20%                          | Course instructor |
| Semester End Exami | nation (Written Examination for | Mark                         | s 100             |
| T                  | 'hree Hours)                    | (Weighta                     | ge 50%)           |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | CHEMICAL TECHNOLOGY       |   |   |   |   |   |    |     |       |              |            |       |           |
|---------------------|---|---------------------------|---|---|---|---|---|----|-----|-------|--------------|------------|-------|-----------|
| <b>Course Code</b>  | 1 | 9                         | C | H | 7 | D | C | C  | T   | N     | Credits      | 03         | L-T-P | 3 - 0 - 0 |
| CIE                 |   | 100 marks (50% weightage) |   |   |   |   |   | e) | SEE | 100 n | narks (50% v | veightage) |       |           |

**PREREQUISITES:** Mechanical operations, Process Thermodynamics-I, Process Thermodynamics-II **SYLLABUS:** 

### **UNIT-I**

**CHEMICAL PROCESS INDUSTRIES AND FUELS:** Introduction- Components of flow sheet: Unit operations, unit processes, mass and material balance equations.

**FUELS AND INDUSTRIAL GASES-** Coking of coal, LPG, LNG, Petroleum technology- Constituents, distillation of crude petroleum.

**CRYOGENIC INDUSTRY-**Nitrogen and Oxygen by Linde –Frankl's process.

10 Hrs

#### UNIT-II

INORGANIC CHEMICALS: Sulphuric acid - DCDA Process; Alkali industry- Soda Ash, Caustic soda; Nitrogen Industries- Ammonia and Nitric Acid; and Phosphoric acid –Hydrochloric acid leaching method. 07 Hrs

### **UNIT-III**

NATURAL INDUSTRIES: Sugar Industry; Oil industry: Vegetable oil extraction; Refining and hydrogenation and Surfactant industry: Manufacture of soaps and detergents.

06 Hrs

#### **UNIT-IV**

**COMMERCIAL INDUSTRIES:** Fermentation Industry-Manufacture of ethyl alcohol, penicillin; Polymer industry - LDPE, PVC; Rubber Industry-Natural rubber and SBR; Paper industry- Pulp from sulfate process, paper from pulp, treatment of effluent from sulfate process.

10 Hrs

### **UNIT-V**

MISCELLANEOUS INDUSTRIES: Paints- Zinc oxide, Titanium dioxide; Cement Industry-Limestone beneficiation and Cement Fertilizers- Urea, NPK, bio fertilizers. 06 Hrs

### **TEXTBOOKS:**

- 1. George T.A. and Shreve's, Chemical process industries, 5<sup>th</sup> edition, McGraw Hill International Ltd., 1984.
- 2. Gopal Rao, M. and Marshall Sitting, Dryden's Outlines of Chemical Technology, 3<sup>rd</sup> Edition, Affiliated East West Press Pvt. Ltd., New Delhi, 1997.

## **REFERENCE BOOKS:**

- 1. Shukla S. D. and Pandey G. N., Textbook of chemical technology, Volume 2, Vikas Publishing House Pvt. Ltd., New Delhi, 1979.
- 2. Chemical Process Technology, O.P. Gupta, 1<sup>st</sup> edition, Khanna Publishing House, 2018.

### **E BOOKS:**

- 1. Handbook of Chemical Technology and Pollution Control (Third Edition): http://www.sciencedirect.com/science/book/9780120887965
- 2. Chemical Technology: An Integral Textbook: <a href="https://www.wiley.com/en-in/Chemical+Technology:+An+Integral+Textbook-p-9783527670611">https://www.wiley.com/en-in/Chemical+Technology:+An+Integral+Textbook-p-9783527670611</a>



**Autonomous College under VTU** 

## **MOOC's and ONLINE COURSES:**

- 1) http://nptel.ac.in/courses/103103029/
- 2) <a href="http://www.vlab.co.in/ba-nptel-labs-chemical-engineering">http://www.vlab.co.in/ba-nptel-labs-chemical-engineering</a>

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units.
- 2. Five questions to be answered.
- 3. One question from each unit.
- 4. One question each from Unit II, III, and V and two questions each from Unit I and IV.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                                   | PROGRAMME<br>OUTCOMES |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| CO1 | Acquainted with sources, methods, and thermodynamics for the synthesis of chemicals                                               | PO2                   |
| CO2 | Comprehend the construction and working details of equipment used for upstream operations                                         | PO3                   |
| CO3 | Analyse and describe the unit operations/processes adopted for the synthesis                                                      | PO2                   |
| CO4 | Demonstrate the conventional and modern separation technology adopted in downstream processing                                    | PO3                   |
| CO5 | Write the mass and material balance and energy balance equations across each unit operation/unit process                          | PO2                   |
| CO6 | Identify the economics and engineering problems associated with the process and apply broad cognitive to assess the social issues | PO6                   |

## **ASSESSMENT:**

| Continuous                                                     | <b>Internal Assessments</b>   | Marks 100 (Weightage 50%) | Assessment        |  |  |  |  |
|----------------------------------------------------------------|-------------------------------|---------------------------|-------------------|--|--|--|--|
| Theory Component                                               | Three Internals (Best of Two) | 40%                       | Course Instructor |  |  |  |  |
|                                                                | Quiz (Two Quizzes)            | 10%                       | Course Instructor |  |  |  |  |
| Semester End Examination (Written Examination for Three Hours) |                               |                           |                   |  |  |  |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | RISK AND SAFETY MANAGEMENT IN PROCESS INDUSTRIES        |  |  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 9 C H 7 D C R S M Credits 02 L-T-P 1-0-1                |  |  |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |  |

#### **SYLLABUS:**

### **UNIT I**

**RISK BASED PROCESS SAFETY:** Four Pillars and 20 Elements of Risk based Process safety. Process Safety Information, Hazard Identification and Risk Analysis, Compliance with standards, operating procedures, Training and Performance Assurance, Operational readiness, Document Control, Management of Change, Prestart up safety review, Asset Integrity and reliability, Safe work practices, Incident Investigation, Measurement Metrics,

**AUDITS:** Workforce Involvement and Conduct of Operation

**EMERGENCY MANAGEMENT**: Management review and Continuous Improvement-Implementation and the Future. **07Hrs** 

#### **UNIT II**

**RISK IDENTIFICATION METHODS:** Quantitative and Qualitative risk assessment techniques, Hazard Identification (HAZID), Hazard and Operability studies, Failure mode risk analysis, Fault tree Analysis, Event tree Analysis.

HAZARDOUS AREA CLASSIFICATION AND DESIGN PRINCIPLES (DUST, GAS AND VAPORS): Hazardous zones: Classification of hazardous zones -intrinsically safe and explosion proof equipment's (IS, API and OSHA standard) -increase safe equipment-their selection for different zones- temperature classification-grouping of gases-use of barriers and isolators.

07Hrs

### **UNIT III**

MANAGING CHANGE AND SAFE WORK PRACTICES IN FACTORY: CASE LESSON: Elucidate the Changes that has been made in the process Industry citing examples of the entire risk identification, management, and treatment.

Share the experience on How Non routine work activity of High-risk category is managed without any untoward incident or Loss?

04Hrs

#### **UNIT IV**

**MECHANICAL INTEGRITY: CASE LESSON:** Identification of Critical safety process equipment's and controls that safeguard in case of any Malfunction or Human Error.

Chemical Storage tanks, Fuel Storage Tanks. (Focus towards Bhopal Gas Tragedy)- Learnings from the Event. **04Hrs** 

### **UNIT V**

**PROCESS SAFETY INFORMATION: CASE LESSON:** Share the learnings on Basis of Safety adopted in Process Industries, citing Minimum two key aspects:

- Piping and Instrument diagram
- Material of construction of Pressure pipelines and Vessels.
- Reaction based controls. (Example: Quenching Runaway reaction)
- Process controls and Critical cutoffs.

04Hrs.

## **TEXTBOOKS:**

- 1. Lees F.P, Loss Prevention in Process Industries, 2<sup>nd</sup> edition, Butterworth Heinemann, 1996
- 2. Trevor Kletz, What Went Wrong? 5<sup>th</sup> edition, Butterworth Heinemann, 2009



**Autonomous College under VTU** 

# **REFERENCE BOOKS:**

1. Sam Mannan, Lee's Loss Prevention in the Process Industries Hazard Identification, Assessment and Control Volume 1, 3<sup>rd</sup> edition, Elsevier, 2004.

## E BOOKS

1. Guidelines for Risk Based Process Safety, American Institute of Chemical Engineers, Wiley, <a href="https://onlinelibrary.wiley.com/doi/book/10.1002/9780470925119">https://onlinelibrary.wiley.com/doi/book/10.1002/9780470925119</a>

# **MOOC's & ONLINE COURSES:**

1) Process Safety Management Overview, eLearning (online) Courses, https://www.aiche.org/academy/courses/els105/process-safety-management-overview

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                          | PROGRAMME<br>OUTCOMES |
|-----|----------------------------------------------------------------------------------------------------------|-----------------------|
| CO1 | Interpret and apply legislative requirements, industry standards, and best practices in the workplace    | PO6                   |
| CO2 | Apply risk management principles to anticipate, identify, evaluate and control industrial hazards        | PO7                   |
| CO3 | Practice due diligence and employ ethical standards in all aspects of professional conduct.              | PO8                   |
| CO4 | Work in a team to review and interpret the Industrial safety case studies                                | PO9                   |
| CO5 | Communicate and report the industrial risk & safety management practices through technical presentations | PO10                  |
| CO6 | Affect/manage change by advancing safety principles within the work environment.                         | PO12                  |

### ASSESSMENT:

| Continuous I | Internal Assessments                                                 | Marks 100%<br>(Weightage 50%) | Assessment                   |  |  |  |  |  |  |
|--------------|----------------------------------------------------------------------|-------------------------------|------------------------------|--|--|--|--|--|--|
| Practical    | Presentation 1                                                       | 40%                           | Committee constituted by HOD |  |  |  |  |  |  |
| Component    | Presentation 2                                                       | 40%                           | Committee constituted by HOD |  |  |  |  |  |  |
|              | Report                                                               | 20%                           | Course Instructor/ Guide     |  |  |  |  |  |  |
| 5            | Semester End Examination – Presentation and write up (Weightage 50%) |                               |                              |  |  |  |  |  |  |

| Component   | Presentation 1 | <b>Presentation 2</b> | Report | <b>Total Marks</b> |
|-------------|----------------|-----------------------|--------|--------------------|
| Max. Marks  | 40             | 40                    | 20     | 100                |
| Reduced CIE | 20             | 20                    | 10     | 50                 |



Autonomous College under VTU

| <b>Course Title</b> |   | ADVANCES IN ENERGY TECHNOLOGY                           |  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 9 C H 7 O E A E T Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |

**PREREQUISITES:** Environmental Science and pollution control, Environmental Science

## **SYLLABUS:**

### **UNIT I**

**INTRODUCTION:** Man, and energy, worlds and India's production and reserves of energy, present and future power position, need for alternate energy, energy alternatives.

06 Hrs

#### **UNIT II**

**SOLAR ENERGY:** Introduction: Extra-terrestrial solar radiation, radiation at ground level, collectors. Solar cells, applications of solar energy

06 Hrs

### **UNIT III**

**BIOMASS & GEOTHERMAL:** Biomass energy, introduction, biomass conversion, biogas production, ethanol production, pyrolysis and gasification, direct combustion, applications of biomass energy.

**RECOVERY OF THERMAL CONVERSION PRODUCTS**: Combustion of waste materials & related calculations, waste incineration with heat recovery and use of refused derived fuels (RDF).

**GEOTHERMAL ENERGY:** Introduction, resource types, resource base, applications for heating and electricity generation.

10 Hrs

### **UNIT IV**

**WIND ENERGY SOURCES:** Introduction: Basic theory, types of turbines, applications.

**HYDROPOWER ENERGY SOURCES:** Introduction, basic concepts, site selection, types of turbines, small scale hydropower.

10 Hrs

### **UNIT V**

**FUEL CELLS:** Introduction Principle and operation of fuel cells, classification and types of fuel cells and application of fuel cells.

**07 Hrs** 

#### **TEXTBOOKS:**

- 1. G. D. Rai, Non-conventional energy resources, 1<sup>st</sup> Edition, Khanna Publishers, New Delhi, 2011.
- 2. B. H Khan, Non-conventional energy resources, Tata McGraw Hill, New Delhi.

### **REFERENCE BOOKS:**

- 1. Harker and Back Hurst, Fuel and energy science and engineering, Academic press, London 1981.
- 2. Howard S. Peavy, Donald R Rowe & George Tchobanoglous, Environmental Engineering, MeG Engineering Thermodynamics raw Hill International Editions



**Autonomous College under VTU** 

## **E BOOKS**

 Non-Conventional Energy Resources (Second Edition) by B.H. Khan, <a href="https://www.abebooks.com/Non-Conventional-Energy-Resources-Second-Edition-B.H/4877611079/bd">https://www.abebooks.com/Non-Conventional-Energy-Resources-Second-Edition-B.H/4877611079/bd</a>

### **MOOC's &ONLINE COURSES:**

1) <a href="http://nptel.ac.in/courses/Webcourse-contents/">http://nptel.ac.in/courses/Webcourse-contents/</a>

# **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units.
- 2. Five questions to be answered.
- 3. One question each from Unit I, II, and V and two questions each from Unit III and IV.

# **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                          | PROGRAMME<br>OUTCOMES |
|-----|--------------------------------------------------------------------------|-----------------------|
| CO1 | Acquaint with the various forms of available and alternative energy      | PO2                   |
|     | resources                                                                |                       |
| CO2 | Demonstrate the global scenario of energy recourses and its need for     | PO7                   |
|     | sustainable development.                                                 |                       |
| CO3 | Comprehend the principles behind different non-conventional energy       | PO2                   |
|     | systems.                                                                 |                       |
| CO4 | Analyse economic and environmental aspects to establish non-             | PO6                   |
|     | conventional energy harvesting units.                                    |                       |
| CO5 | Design and Develop the energy generating devices using renewable energy  | PO3                   |
|     | sources.                                                                 |                       |
| CO6 | Understand the applications of various non -conventional energy systems. | PO2                   |

## **ASSESSMENT:**

| Continuous        | <b>Internal Assessments</b>   | Marks 100 (Weightage 50%) | Assessment        |
|-------------------|-------------------------------|---------------------------|-------------------|
| Theory Component  | Three Internals (Best of Two) | 40%                       | Course Instructor |
|                   | Quiz (Two Quizzes)            | 10%                       | Course Instructor |
| Semester End Exan | nination (Written Examination | for Three Hours)          |                   |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | ADVANCES IN SEPARATION TECHNIQUES                       |  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 9 C H 7 D E L E 1 Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |

PREREQUISITES: Mass Transfer 1, Mass Transfer II, and Interfacial Phenomena

#### **SYLLABUS:**

#### UNIT I

**FUNDAMENTAL CONCEPTS:** Basic Separation Techniques, Separations by Phase Addition or Creation, Separations by Barriers, Separations by Solid Agents, Separations by External Field or Gradient, Separation Factor, Selection of Feasible Separations. **06 Hrs** 

#### **UNIT II**

**MEMBRANE SEPARATIONS**: Membrane Materials, Different Membrane Shapes like flat, asymmetric or thin-film composite sheet, tubular, hollow-fibre and monolithic; Membrane Modules like plate-and-frame, spiral-wound, four-leaf, spiral-wound, hollow-fibre, tubular and monolithic; Transport in Porous Membranes, Module Flow Patterns like perfect mixing, counter-current flow, co-current flow and crossflow.

INDUSTRIAL MEMBRANE SEPARATION PROCESSES: Reverse Osmosis, Nano filtration, Ultrafiltration, Microfiltration and Dialysis: Physio chemical principles, Process Description and Applications.

10 Hrs

### **UNIT III**

**SEPARATIONS BY SOLID AGENTS**: Adsorption: Industrial Applications, Adsorbents, Equilibrium Considerations, Kinetic and Transport Considerations, Equipment; Chromatography: Industrial Applications, Sorbents for Chromatography, Equilibrium considerations, Equipment.

10 Hrs

#### **UNIT IV**

**Ionic Separations:** Electro dialysis, Electrophoresis, Ion exchange chromatography: Physio chemical principles, Process Description and Industrial Applications. **07 Hrs** 

#### **UNIT V**

**Other Techniques**: Gas Permeation, Pervaporation, Supercritical fluid extraction, Zone Melting: Physio chemical principles, Process Description and Applications. **06 Hrs** 

### **TEXT BOOKS:**

- 1. Separation Process Principles; J. D. Seader, Ernest J. Henley, D. Keith Roper, Third Edition, John Wiley & Sons, Inc.
- 2. Separation Processes, C. J. King, Second Edition, Mc Graw Hill Chemical Engineering Series



Autonomous College under VTU

## **REFERENCE BOOKS:**

- 1. Handbook of Separation Process Technology, R.W. Rousseau, John Wiley and Sons
- 2. Encyclopaedia of Chemical Technology, Kirk-Othmer, Fifth Edition, John Wiley and Sons

# **E BOOKS**

1) Separation Process Engineering, Wankat Phillip C, Second Edition, Prentice Hall.

# **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units.
- 2. Five questions to be answered.
- 3. One question each from Unit I, IV, and V and two questions each from Unit II and III.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                                                                         | PROGRAMME<br>OUTCOMES |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| CO1 | Apply the knowledge of engineering fundamentals to utilize separation operations in chemical industries.                                                                | PO1                   |
| CO2 | Identify membrane processes in terms of materials, modules, mechanisms of transport and industrial applications.                                                        | PO2                   |
| CO3 | Apply contextual knowledge for the industrial application of Adsorption and Chromatography techniques.                                                                  | PO6                   |
| CO4 | Demonstrate the pursuance of sustainable development through Electro dialysis, Electrophoresis and Ion exchange chromatography techniques.                              | PO7                   |
| CO5 | Illustrate Gas Permeation, Pervaporation, Supercritical fluid extraction and Zone Melting in terms of Physio chemical principles, Process Description and Applications. | PO7                   |
| CO6 | Differentiate the separation techniques in terms of their relative advantages, disadvantages and applicability in the context of technological changes.                 | PO12                  |

### **ASSESSMENT:**

| Continu            | uous Internal Assessments              | Marks 100<br>(Weightage 50%) | Assessment |  |
|--------------------|----------------------------------------|------------------------------|------------|--|
| Theory Component   | Three Internals( Best of Two)          | 80%                          | Course     |  |
|                    |                                        |                              | instructor |  |
|                    | Quiz (Two Quizzes or AAT)              | 20%                          | Course     |  |
|                    |                                        |                              | instructor |  |
| Semester End Exami | nation ( Written Examination for Three | Marks 10                     | 00         |  |
|                    | Hours)                                 | (Weightage 50%)              |            |  |

### **Assessment Pattern:**

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| Course Title       |   | PILOT PLANT AND SCALE UP STUDIES                        |  |  |  |  |  |  |  |  |
|--------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|
| <b>Course Code</b> | 1 | 9 C H 7 D E L E 2 Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |
| CIE                |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |

**PREREQUISITES:** Chemical equipment design, Process Equipment Design, Chemical Reaction Engineering-II, Fluid Mechanics, and Heat Transfer

**SYLLABUS:** 

#### UNIT I

**INTRODUCTION**: Evolution of process system, Role of pilot plants, Major Factors in Scale –Up, Concept of prototypes, models, scale ratios, element. **06 Hrs** 

## UNIT II

**SIMILARITY**: Principles of Similarity: Geometric similarity. Distorted similarity. Static, dynamic, kinematics, thermal and chemical similarity with examples, Dimensional Analysis.

06 Hrs

#### UNIT III

**REGIME CONCEPT**: Static regime. Dynamic regime. Mixed regime concepts. Criteria to decide the regimes. Equations for scale criteria of static, dynamic processes, Extrapolation. Boundary effects.

**07 Hrs** 

#### **UNIT IV**

SCALE UP OF MIXING PROCESS AND CHEMICAL REACTORS: Mixing Processes: Scale-up relationships, Scale-up of polymerization units, Continuous stages gas liquid slurry processes.

**FLUID-FLUID REACTORS:** Scale-up considerations in packed bed absorbers and bubble columns, Applicability of models to scale-up.

10 Hrs

## **UNIT V**

**SCALE UP OF MASS AND HEAT TRANSFER PROCESSES**: Continuous Mass Transfer Process: Fundamental considerations scale-up procedure for distillation, Absorption, Stripping and extraction units.

Scale up of momentum and heat transfer systems.

10 Hrs

### **TEXT BOOKS**

- 1. Attilio Bisio, Robert L. Kabel, Scale up of Chemical Processes, L. Kabel, John Wiley & Sons, 1985.
- 2. Johnstone and Thring, Pilot Plants Models and scale up method in Chemical Engineering, McGraw Hill, 1957.

### REFERENCE BOOKS

- 1. Marko Zlokarnik, Scale-up in chemical engineering, Wiley-VCH, 2006
- 2. Colin Divall, Sean Johnston, Scaling up: The Institution of Chemical Engineers and the rise of a new profession, Springer (2000)



**Autonomous College under VTU** 

## **E BOOKS**

1. P. E. Burke, H. M. S. Patel, Pilot Plants and Scale-up of Chemical Processes, Volume 1, Royal Society of Chemistry, Information Services, 1997

### **MOOC's &ONLINE COURSES:**

1) Scale up Process Operations: <a href="https://www.icheme.org/career/training/online-training/scale-up/">https://www.icheme.org/career/training/online-training/scale-up/</a>

# **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units.
- 2. Five questions to be answered.
- 3. One question each from Unit I, II, and III and two questions each from Unit IV and V.

# **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                           | PROGRAMME |
|-----|---------------------------------------------------------------------------|-----------|
|     |                                                                           | OUTCOMES  |
| CO1 | Comprehend the concept of Pilot Plant Scale up.                           | PO2       |
| CO2 | Recognise the importance of principles of Similarity in scale up process. | PO2       |
| CO3 | Develop the correlation between various physical quantities involved.     | PO4       |
| CO4 | Scale up Mixing Processes ,fluid-fluid reactors and separation processes  | PO3       |
| CO5 | Scale up momentum and heat transfer systems                               | PO3       |
| CO6 | Identify and conclude engineering limitations allied with the scale up    | PO6       |
|     | process.                                                                  |           |

### **ASSESSMENT:**

| Continue            | ous Internal Assessments              | Marks 100<br>(Weightage<br>50%) | Assessment        |  |
|---------------------|---------------------------------------|---------------------------------|-------------------|--|
| Theory Component    | Three Internals( Best of Two)         | 80%                             | Course instructor |  |
|                     | Quiz (Two Quizzes or AAT)             | 20%                             | Course instructor |  |
| Semester End Examin | ation ( Written Examination for Three | Marks 100                       |                   |  |
|                     | Hours)                                | (Weighta                        | age 50%)          |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



**Autonomous College under VTU** 

| <b>Course Title</b> |   | PRE-PROJECT WORK                                        |  |  |  |  |  |  |  |  |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|
| <b>Course Code</b>  | 1 | 9 C H 7 D C P P W Credits 02 L-T-P 0-0-2                |  |  |  |  |  |  |  |  |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  |

A project is assigned at the beginning of the seventh semester. The project group should complete the preliminary literature survey & plan of project and submit the synopsis at the end of seventh semester with a literature survey and plan for the experimental work to be performed with all parameters.

# **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                                                                                 | PROGRAMME<br>OUTCOMES |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| CO1 | Perform extensive literature survey to understand the changes in the                                                                                            | PO4                   |
| CO2 | Identify a feasible method to carry out the project work by considering                                                                                         | PO8                   |
| CO3 | professional ethics of engineering practice  To formulate one or more methodological approach to carry out the                                                  | PO6                   |
|     | experiments to find a feasible solution for societal and environmental problems.                                                                                |                       |
| CO4 | Communicate and present/publish effectively the methodological planned to carry out the project work.                                                           | PO10                  |
| CO5 | Develop multidisciplinary skills to work as an individual and as a member or leader in diverse team                                                             | PO9                   |
| CO6 | Relate the outcomes of the project where the knowledge on developed understanding will help in lifelong learning so as to suit the current technological trends | PO12                  |

### **ASSESSMENT:**

| Contin              | uous Internal Assessments                | <b>Marks 100%</b> | Assessment  |  |
|---------------------|------------------------------------------|-------------------|-------------|--|
|                     |                                          | (Weightage 50%)   |             |  |
| Practical Component | Presentation Based on the Topics/problem | Presentation 1    | Committee   |  |
|                     | taken up by the project group under the  | 50%               | constituted |  |
|                     | guidance by a faculty from the           |                   | by HOD      |  |
|                     | department /external guide from          | Presentation 2    |             |  |
|                     | industries/other research organisation   | 50%               |             |  |
| Semester E          | nd Examination ( Presentation)           | Marks 100         |             |  |
|                     |                                          | (Weightage 5      | 50%)        |  |

| Component   | Presentation 1 | Presentation 2 | Report | Total Marks |
|-------------|----------------|----------------|--------|-------------|
| Max. Marks  | 40             | 40             | 20     | 100         |
| Reduced CIE | 20             | 20             | 10     | 50          |



**Autonomous College under VTU** 

| <b>Course Title</b> | SEMIN | AR                                         | -2: B | ASE | D C | )N R | EVI | EW | OF  | RES | SEARCH P | UBI            | ICATION/I | PATENTS |
|---------------------|-------|--------------------------------------------|-------|-----|-----|------|-----|----|-----|-----|----------|----------------|-----------|---------|
| <b>Course Code</b>  | 1     | 1 9 C H 7 D C S R 2 Credits 01 L-T-P 0-0-1 |       |     |     |      |     |    |     |     |          |                |           |         |
| CIE                 | 100   | 100 marks (50% weightage)                  |       |     |     |      |     |    | SEE |     |          | 100 marks (50% |           |         |
|                     |       |                                            |       |     |     |      |     |    |     |     |          |                | weight    | tage)   |

The students are expected to obtain a certificate in 3rd/4th/5<sup>th</sup>/6th Semester in any one of the MOOCS (NPTEL/SWAYAM) courses enlisted in the syllabus or courses related to Chemical Engineering and allied areas. If the student selects any course other than that enlisted, should get prior approval from the Department. The student should submit a report and present the same during the sixth semester. The course will be evaluated by a committee constituted by the HoD for internal assessment.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES | PROGRAMME<br>OUTCOMES |
|-----|-----------------|-----------------------|
| CO1 |                 |                       |
| CO2 |                 |                       |
| CO3 |                 |                       |
| CO4 |                 |                       |
| CO5 |                 |                       |
| CO6 |                 |                       |

#### **ASSESSMENT:**

| Continuous I | nternal Assessments                                                  | Marks 100%      | Assessment                   |  |  |  |  |
|--------------|----------------------------------------------------------------------|-----------------|------------------------------|--|--|--|--|
|              |                                                                      | (Weightage 50%) |                              |  |  |  |  |
| Practical    | Presentation 1                                                       | 40%             | Committee constituted by HOD |  |  |  |  |
| Component    | Presentation 2                                                       | 40%             | Committee constituted by HOD |  |  |  |  |
|              | Report                                                               | 20%             | Course Instructor/ Guide     |  |  |  |  |
| S            | Semester End Examination – Presentation and write up (Weightage 50%) |                 |                              |  |  |  |  |

| Component   | <b>Presentation 1</b> | <b>Presentation 2</b> | Report | <b>Total Marks</b> |
|-------------|-----------------------|-----------------------|--------|--------------------|
| Max. Marks  | 40                    | 40                    | 20     | 100                |
| Reduced CIE | 20                    | 20                    | 10     | 50                 |



Autonomous College under VTU

### **EIGHTH SEMESTER**

| <b>Course Title</b> |   | PROJECT MANAGEMENT AND FINANCE                          |  |  |  |  |  |  |  |  |            |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|--|------------|
| <b>Course Code</b>  | 1 | 9 C H 8 D C P M F Credits 03 L-T-P 3-0-0                |  |  |  |  |  |  |  |  |            |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  |  | weightage) |

**PREREQUISITES:** Economics in Engineering, Statistics and Probability

**Syllabus:** 

#### UNIT I

**PROJECT PLANNING:** Overview of project planning, Resource Allocation strategies, generation and screening of project ideas and plans. **06 Hrs** 

## UNIT II

**PROJECT ANALYSIS:** Analysis, Market and demand analysis, Technical analysis, Financial requirements and estimation **06 Hrs** 

### UNIT III

**PROJECT SELECTION:** Time value of money, Investment criteria, Cash flows, Cost of capital, Risk factors and analysis and Analysis of rate of return **07 Hrs** 

#### **UNIT IV**

FINANCING OF PROJECTS: Raising capital methods and means, Venture capital, Credit risk rating, Case studies and corporate examples in brief

10 Hrs

#### **UNIT V**

**PROJECT SCHEDULING & EXECUTION:** CPM and PERT (Critical Path, Float, Total Float, AON, AOA Diagram), GANTT charts, LOB, Resource Allocation, ABC analysis, VED analysis, EOQ, CAT & RAT (Numerical problems included)

10 Hrs

#### **TEXTBOOKS**

- 1. Prassanna Chandra, "Projects", Tata McGraw Hill, 8<sup>th</sup> edition., 2014.
- 2. Sadhan Choudhury, "Project Management": Tata McGraw-Hill Education, 1988.

### REFERENCE BOOKS

- 1. J. K. Sharma, "Operation Research" MacMillan, 4th edition., 2009.
- 2. Entrepreneurship Development, Colombo Plan Staff College for Technical Education, Tata Mc Graw Hill, 1998.

#### E BOOKS

1. Principles of Project Finance by E.R. Yescombe, 1<sup>st</sup> Edition: <a href="https://www.amazon.com/Principles-Project-Finance-R-Yescombe-ebook/dp/80027IS4WE">https://www.amazon.com/Principles-Project-Finance-R-Yescombe-ebook/dp/80027IS4WE</a>



Autonomous College under VTU

2. Project Management by K.Nagarajan : <a href="http://www.bookadda.com/books/project-management-k-nagarajan-8122428037-9788122428032">http://www.bookadda.com/books/project-management-k-nagarajan-8122428037-9788122428032</a>

## **MOOC's & ONLINE COURSES:**

- 1) <a href="https://alison.com/courses/Diploma-in-Project-Management">https://alison.com/courses/Diploma-in-Project-Management</a>
- 2) https://www.coursera.org/learn/project-management-basics

## **QUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units.
- 2. Five questions to be answered.
- 3. One question each from Unit I, II, and III and two questions each from Unit IV and V.

# **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                   | Programme |
|-----|-----------------------------------------------------------------------------------|-----------|
|     |                                                                                   | Outcomes  |
| CO1 | To make the student understand the concept of a project with relevance to         | PO11      |
|     | industry and chemical industry in particular.                                     |           |
| CO2 | Recognize the effective functions of an individual, a member or leader in diverse | PO9       |
|     | teams, and in multidisciplinary settings.                                         |           |
| CO3 | Communicate effectively about the need of industrial or societal project.         | PO10      |
| CO4 | Demonstrate the knowledge and understanding of project planning and its           | PO11      |
|     | implementation.                                                                   |           |
| CO5 | Demonstrate the knowledge and understanding of project finance                    | PO11      |
| CO6 | Learn different methods to analyse project duration.                              | PO4       |

## **ASSESSMENT:**

| Continuo          | us Internal Assessments           | Marks 100%      | Assessment        |
|-------------------|-----------------------------------|-----------------|-------------------|
|                   |                                   | (Weightage 50%) |                   |
| Theory Component  | Three Internals (Best of Two)     | 60%             | Course Instructor |
|                   | Quiz (Two Quizzes)                | 10%             | Course Instructor |
| Self-Study        | Term                              | 40%             | Committee         |
| Component         | Papers/Modelling/Seminar/Mini     |                 | constituted by    |
|                   | projects.                         |                 | HOD               |
| Semester End Exan | nination (Written Examination for | Mark            | s 100             |
|                   | Three Hours)                      | (Weighta        | ge 50%)           |

| Component   | Test<br>1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|-----------|--------|------------|-------------|-------------|
| Max. Marks  | 40        | 40     | 10         | 10          | 100         |
| Reduced CIE | 20        | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| Course Title       |   | INDUSTRIAL SAFETY AND OCCUPATIONAL HEALTH               |                                          |  |  |  |  |  |  |  |  |            |
|--------------------|---|---------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|--|--|------------|
| <b>Course Code</b> | 1 | 9                                                       | 9 C H 8 O E I S O Credits 03 L-T-P 3-0-0 |  |  |  |  |  |  |  |  |            |
| CIE                |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |                                          |  |  |  |  |  |  |  |  | weightage) |

#### **SYLLABUS:**

#### **UNIT-I**

**ISO45001**: Scope, Normative references, terms and Definitions, Context of the organization, Leadership and Worker participation, Planning, Support, Operation, Performance evaluation and Improvement. Safety Management System and Regulations Complimenting Safety of People and Loss prevention in Factories. **07 Hrs** 

#### **UNIT-II**

**INDIAN LAWS GOVERNING INDUSTRIAL SAFETY:** Factories act, State rules there under building and other construction workers acts and rules, Gas cylinders' rules, Explosives acts, Petroleum act, Static and Mobile pressure vessels (Unfired) rules, Indian Boiler acts and rules.

EMPLOYEE SAFETY: Concept of Man-Machine system, Applications of human factors engineering, Human behaviour, Individual difference, Unsafe Action Factors, Personal Factors, Psychological and Psychosocial Factors, Motivation, Frustration and Conflicts, Attitudes and Learning concepts. Personal Protective Equipment: Types, specifications, standards, testing procedures, maintenance. Principles of Ergonomics: Application of ergonomics in a work system.

10 Hrs

#### UNIT-III

**PRINCIPLES OF MACHINE GUARDING:** Machine Safety risk assessment, Physical guard assessment and allied Controls.

Guarding during maintenance, Zero Mechanical State (ZMS), Definition.

**POLICY FOR ZMS**: Guarding of hazards - point of operation protective devices, machine guarding, types, fixed guard, interlock guard, automatic guard, trip guard, electron eye, positional control guard, fixed guard fencing, guard construction, guard opening. Selection and suitability to ensure controls.

06 Hrs

### **UNIT-IV**

**INCIDENT REPORTING INVESTIGATION AND ANALYSIS:** Accidents classification and analysis-fatal, serious, minor, and reportable accidents, safety audits, recent development of safety engineering approaches for industrial activity, frequency rates, accident occurrence, investigation, measures for improving safety in factories, cost of accident.

**CORRECTIVE ACTION MANAGEMENT**: Emergency preparedness, disaster management. Periodic Inspection of workplace to validate the operability and availability of Controls designed, initiating actions after conducting root cause analysis. **06 Hrs** 

#### **UNIT-V**

**ELECTRICAL SAFETY CONCEPTS AND STATUTORY REQUIREMENTS**: Introduction – electrostatics, electromagnetism, stored energy, energy radiation and electromagnetic interference – Working principles of electrical Equipment-Indian electricity act and rules-statutory requirements from electrical inspectorate-international standards on electrical safety – first aid-cardiopulmonary resuscitation (CPR).



Autonomous College under VTU

**ELECTRICAL HAZARDS:** Primary and secondary hazards— Energy leakage — Clearance and insulation — Excess energy — Current surges — Electrical causes of fire and explosion -ionization, spark and arc-ignition energy — National electrical Safety code - Safety in handling equipment's-over current and short circuit current-heating effects of current-electromagnetic forces-corona effect-static electricity — definition, sources, hazardous conditions, control.

**Protection systems:** fuse, circuit breakers and Personal protective equipment – safety in handling handheld electrical appliances tools and medical equipment's. Lightning, hazards, lightning arrestor, installation – earthing, specifications, earth resistance, earth pit maintenance. **10 Hrs** 

### **TEXT BOOKS**

- 1. ISO 45001:2018 BSI Standards Publication, 2018.
- 2. K.U. Mistry, Fundamentals of Industrial Safety and Health, 1st Edition, Siddharth Prakashan, 2008

#### REFERENCE BOOKS

- 1. Lees F.P, Loss Prevention in Process Industries, 2<sup>nd</sup> edition, Butterworth Heinemann, 1996
- 2. Trevor Kletz, What Went Wrong? 5<sup>th</sup> edition, Butterworth Heinemann, 2009

#### E BOOKS

 Charles D. Reese, Occupational Health and Safety Management, <a href="https://www.routledge.com/Occupational-Health-and-Safety-Management-A-Practical-Approach-Third-Edition/Reese/p/book/9781138749573">https://www.routledge.com/Occupational-Health-and-Safety-Management-A-Practical-Approach-Third-Edition/Reese/p/book/9781138749573</a>

## **MOOC's & ONLINE COURSES:**

1) Health & Safety Training Courses, <a href="https://www.britsafe.org/training-and-learning/find-the-right-course-for-you/all-health-safety-and-environmental-training-courses/">https://www.britsafe.org/training-and-learning/find-the-right-course-for-you/all-health-safety-and-environmental-training-courses/</a>

### **OUESTION PAPER PATTERN:**

- 1. Overall question paper pattern to have seven questions from five units.
- 2. Five questions to be answered.
- 3. One question each from Unit I, III, and IV and two questions each from Unit II and V.

## **COURSE OUTCOMES (COs):**

|     | COURSE OUTCOMES                                                                                       | Programme |
|-----|-------------------------------------------------------------------------------------------------------|-----------|
|     |                                                                                                       | Outcomes  |
| CO1 | Interpret and apply legislative requirements, industry standards, and best practices in the workplace | PO6       |
| CO2 | Apply risk management principles to anticipate, identify, evaluate and control occupational hazards   | PO7       |
| CO3 | Practice due diligence and employ ethical standards in all aspects of professional conduct.           | PO8       |
| CO4 | Work in a team to achieve Industrial safety engineering goals                                         | PO9       |



Autonomous College under VTU

| CO5 | Communicate effectively the incidents, their investigation and analysis   | PO10 |
|-----|---------------------------------------------------------------------------|------|
| CO6 | Affect/manage change by advancing safety and health principles within the | PO12 |
|     | work environment.                                                         |      |

# **ASSESSMENT:**

| Со               | ntinuous Internal Assessments             | Marks 100%<br>(Weightage 50%) | Assessment |  |
|------------------|-------------------------------------------|-------------------------------|------------|--|
| Theory Component | Three Internals (Best of Two)             | 80%                           | Course     |  |
|                  |                                           |                               | Instructor |  |
|                  | Quiz (Two Quizzes)                        | 20%                           | Course     |  |
|                  |                                           |                               | Instructor |  |
| Semester End Ex  | xamination (Written Examination for Three | Marks 100                     |            |  |
|                  | Hours)                                    | (Weightage 50%)               |            |  |

| Component   | Test 1 | Test 2 | Quiz 1/AAT | Quiz 2 /AAT | Total Marks |
|-------------|--------|--------|------------|-------------|-------------|
| Max. Marks  | 40     | 40     | 10         | 10          | 100         |
| Reduced CIE | 20     | 20     | 5          | 5           | 50          |



Autonomous College under VTU

| <b>Course Title</b> |   | FINAL PROJECT WORK                                      |  |  |  |  |  |  |  |            |
|---------------------|---|---------------------------------------------------------|--|--|--|--|--|--|--|------------|
| <b>Course Code</b>  | 1 | 9 C H 8 D C F P W Credits 09 L-T-P 0-0-9                |  |  |  |  |  |  |  |            |
| CIE                 |   | 100 marks (50% weightage) SEE 100 marks (50% weightage) |  |  |  |  |  |  |  | weightage) |

The students in a group will be assigned an experimental, design, a case study or an analytical problem, to be carried out under the supervision of a guide. The project has to be assigned at the beginning of the seventh semester. The project group should complete the preliminary literature survey & plan of project and submit the synopsis at the end of seventh semester. The project work should be carried out and completed at the end of eighth semester, which is evaluated by a committee constituted by the HoD for assessment. Students are encouraged to submit one technical paper at the end of the semester in reputed National/International journals for publications/present the paper in any national or international conference at the end of the semester.

# **COURSE OUTCOMES (COs):**

|                 | COURSE OUTCOMES                                                              | PROGRAMME<br>OUTCOMES |
|-----------------|------------------------------------------------------------------------------|-----------------------|
| CO1             | Design and some out the surrouments/design/theoretical design/simulations    |                       |
| CO1             | Design and carry out the experiments/design/theoretical design/ simulations  | PO4                   |
|                 | work in team in the predetermined methodology.                               |                       |
| CO <sub>2</sub> | Analyze and interpret the obtained data for optimum solution using suitable  | PO5                   |
|                 | Engineering and IT tools.                                                    |                       |
| CO3             | Elucidate the short comings and identify the scope for future work           | PO12                  |
| CO4             | Communicate effectively the project the results/write effective reports to   | PO10                  |
|                 | publicize the deduce solutions.                                              |                       |
| CO5             | Develop ability to function and to work as an individual/ as a member/leader | PO9                   |
|                 | in diverse team                                                              |                       |
| CO6             | Understand the essence and need of professional ethics during project        | PO8                   |
|                 | documentation                                                                |                       |

### **ASSESSMENT:**

|           | <b>Continuous Internal Assessments</b>                | Marks 100%      | Assessment     |
|-----------|-------------------------------------------------------|-----------------|----------------|
|           | <del>,</del>                                          | (Weightage 50%) |                |
| Practical | The students will take-up the project assigned in the | Presentation 1  | Two members    |
| Component | previous semester and will start carry out            | 50%             | Committee      |
|           | experiments/design/theoretical                        |                 | constituted by |
|           | interpretation/simulations studies. The students will |                 | HOD            |
|           | present and write reports of the findings.            |                 |                |
|           | The evaluation will be based on the rubrics framed.   | Presentation 2  |                |
|           | The evaluation will be based on the rubbles framed.   | 50%             |                |
| S         | Semester End Examination (Presentation)               | Marks 100 (We   | ightage 50%)   |



Autonomous College under VTU

| Component   | Presentation 1 | Presentation 2 | Report | Total Marks |
|-------------|----------------|----------------|--------|-------------|
| Max. Marks  | 40             | 40             | 20     | 100         |
| Reduced CIE | 20             | 20             | 10     | 50          |



**Autonomous College under VTU** 

| Course Title | SEMINAR 3: BASED ON SUMMER/WINTER INTERNSHIP |                           |   |   |   |   |   |     |                           |   |         |    |       |          |
|--------------|----------------------------------------------|---------------------------|---|---|---|---|---|-----|---------------------------|---|---------|----|-------|----------|
| Course Code  | 1                                            | 9                         | C | H | 8 | D | C | S   | R                         | 3 | Credits | 01 | L-T-P | 0 – 0- 1 |
| CIE          |                                              | 100 marks (50% weightage) |   |   |   |   |   | SEE | 100 marks (50% weightage) |   |         |    |       |          |

The students are expected to undergo in-plant training in any chemical industry or in a reputed research laboratory with pilot plant facility. This shall be for a minimum period of two weeks before end of the eight semesters. The student should submit a report separately, at the beginning of the eighth semester which is evaluated by a committee constituted by the HoD for internal assessment.

# **COURSE OUTCOMES (COs):**

|     | PROGRAMME<br>OUTCOMES                                                                                          |      |
|-----|----------------------------------------------------------------------------------------------------------------|------|
| CO1 | Communicate & report the industrial practices through technical presentations                                  | PO10 |
| CO2 | Develop interpersonal relationship and work as a member in diversified areas                                   | PO9  |
| CO3 | Understand the need of engineering solutions for sustainability and environmental conservation                 | PO7  |
| CO4 | Understand the essence and need of industrial ethics                                                           | PO8  |
| CO5 | PO11                                                                                                           |      |
| CO6 | Recognize the changes in the industrial practices due to technological changes and engage in lifelong learning | PO12 |

## **ASSESSMENT:**

|              | <b>Continuous Internal Assessments</b>                                                                                                              | Marks 100%<br>(Weightage 50%) | Assessment                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|
| Presentation | The Students will present the internship taken up in the semester vacation and submit the certificate issued by the industry along with the report. | 100%                          | Committee constituted by HOD |
| Sem          | ester End Examination (Presentation)                                                                                                                | Marks 100 (Weightag           | ge 50%)                      |

| Component   | Presentation 1 | Presentation 2 | Report | Total Marks |
|-------------|----------------|----------------|--------|-------------|
| Max. Marks  | 40             | 40             | 20     | 100         |
| Reduced CIE | 20             | 20             | 10     | 50          |